NIST logo
*

Research for Next Generation Biometric Measurements and Standards (NGBMS) for Identity Management

Summary:

The long term goal of NGBMS is to fill a rapidly growing technology gap by developing new testing methodologies and standards for evaluating very large-scale next generation multimodal biometric IDM systems. To accomplish this, the development of an open multimodal reference architecture is proposed.  Building such a prototype and test bed will inform technology developers, integrators, and users, leading to new standards; it will enable new types of benchmark studies providing guidance on key issues including accuracy, scalability, missing biometrics, integration of new modalities, quality of biometrics, consolidation / de-duplication, and interoperability of very large-scale systems. It is anticipated that this project will be long-term and performed in phases evolving over the next five years.

Description:

The number of very large-scale identity management (IDM) systems requiring multimodal biometric enrollment is rapidly increasing. Within USG alone, systems such as FBI / IAFIS, DHS / IDENT, and DOD / ABIS collect some combination of finger, face, & iris, but these systems are currently limited in their ability to intelligently exploit these multiple biometrics. Very large Federal procurements are in the works (such as FBI / NGI) to expand multimodal capabilities, and as a result there is an immediate and growing need to fill an existing gap in technical knowledge and standards.

 

The integration of multimodal biometrics provides enhanced capabilities such as: higher accuracy, very large scalability, opportunistic acquisition, compensation for low quality samples, ability to handle missing biometrics, integration of new modalities, enrollment consolidation /de-duplication, and interoperability. While these benefits are anticipated and generally accepted, much is yet to be known about how to architect very large-scale multimodal biometric 1-to-many IDM systems. New standard methods for evaluation are needed to assess the effectiveness and efficiency of these systems, once engineered. With potential for very large scalability, new standard methods for performance assessment must be developed. Testing methods that are applied today at the level of 100,000 probes matched to 1,000,000 enrollment records may/will not work with enrollment databases anticipated to grow to 100s of millions approaching "global" populations of more than a billion people.

End Date:

ongoing

Lead Organizational Unit:

ITL

Staff:

Elham Tabassi, Project Lead

Kenneth Ko
Joe Konczal
Wayne Salamon

Contact

Elham Tabassi

T: (301) 975-5292
E: elham.tabassi(at)nist.gov