NIST logo
Bookmark and Share

Micro- and nano-optomechanical systems


Light can interact with mechanical systems in interesting and useful ways, not only probing the mechanical motion with spectacular sensitivity, but also driving the mechanics via radiation pressure forces or by coupling to embedded quantum systems. We are exploring a variety of such systems for use in practical sensors and quantum measurement science.


Our primary current research direction involves the use of fabricated devices with sub-wavelength periodicity (photonic crystals) as optomechanical elements. Such structures enable a rich variety of devices, including mirrors, polarizers, and filters, in a configuration that couples naturally to free-space optics. We have optically cooled these devices to cryogenic temperatures and are interested in cooling them further, into the quantum domain. We have used them as a key element of a “phonon laser,” for which we are interested in developing useful applications. In other recent work, we have created engineered optical potentials to force controllable bistable and tristable static behavior in a micromechanical system. We have started to explore the use of active media in optomechanics and further novel functionality enabled by sub-wavelength devices, as well as the use of embedded quantum dots as sensors of mechanical displacement.

Start Date:

October 19, 2010

End Date:


Lead Organizational Unit:



John Lawall, NIST Staff
Mathieu Durand, Guest Researcher (Div 697)
Utku Kemiktarak, Guest Researcher
Michael Metcalfe, Guest Researcher


For Technical Inquiries:

John Lawall, NIST Staff
100 Bureau Drive, M/S 8423
Bldg 217/ A229
Gaithersburg, MD 20899
301-975-3226 Telephone
301-975-5485 Facsimile