NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Electro-optical frequency division and stable microwave synthesis
Published
Author(s)
Scott A. Diddams, Jiang Li, Xu Li, Hansuek Lee, Kerry J. Vahala
Abstract
Optical frequency division using a mode-locked- laser, frequency comb has revolutionized time keeping and the generation of stable microwave signals. A different approach for optical frequency division and microwave generation using a comb of frequencies is demonstrated. A tunable electrical oscillator (as opposed to an optical resonator) sets the line spacing of the comb by direct phase modulation of two optical signals whose difference frequency is very stable. Phase-locked control of the electrical oscillator by op- tical division of the higher, difference frequency produces stable microwaves. Functionally, the approach transposes in the frequency domain the oscillator and frequency reference functions of a conventional microwave frequency synthesizer. A significant benefit is magnification of the phase noise stability of the electrical oscillator as opposed to its reduction relative to the frequency reference. Besides simplicity, the approach is tunable and scalable to higher division ratios, potentially approaching that of a conventional mode- locked laser frequency comb.
Diddams, S.
, Li, J.
, Li, X.
, Lee, H.
and Vahala, K.
(2014),
Electro-optical frequency division and stable microwave synthesis, Science Magazine, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=915710
(Accessed October 13, 2025)