Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Dissipative production of a maximally entangled steady state of two quantum bits

NIST Authors in Bold

Author(s): John P. Gaebler; Yiheng Lin; Florentin Reiter; Ting Rei Tan; Ryan S. Bowler; Anders Sorensen; Dietrich G. Leibfried; David J. Wineland;
Title: Dissipative production of a maximally entangled steady state of two quantum bits
Published: December 19, 2013
Abstract: Entangled states are a key resource in fundamental quantum physics, quantum cryptography, and quantum computation [1]. To date, controlled unitary interactions applied to a quantum system, so-called "quantum gates'', have been the most widely used method to deterministically create entanglement [2]. These processes require minimal decoherence that inevitably arises from coupling of the system to the environment and imperfect control of the system parameters. Here, on the contrary, we combine unitary processes with engineered dissipation to deterministically produce and stabilize a Bell state of two trapped ions independent of their initial state. This strategy was also demonstrated in [3] but in contrast to that work, here we do not employ standard entangling gates and we implement the process in a continuous or near-continuous fashion to achieve steady state entanglement, analogous to optical pumping of atomic states. Engineered coupling to the environment can be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, a maximally entangled steady state of two superconducting qubits was demonstrated using dissipation [4].
Citation: Nature
Volume: 504
Pages: pp. 415 - 420
Keywords: Entanglement,Quantum Information,Trapped Ions
Research Areas: Physics
PDF version: PDF Document Click here to retrieve PDF version of paper (324KB)