NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Cold-atom double-lambda coherent population trapping clock
Published
Author(s)
Elizabeth A. Donley, Francois-Xavier R. Esnault, Eric M. Blanshan, Eugene N. Ivanov, Robert E. Scholten, John E. Kitching
Abstract
Miniature atomic clocks based on coherent population trapping (CPT) states in thermal atoms are emerging as an important component in many field applications, particularly where satellite frequency standards are not accessible. Cold-atom CPT clocks promise improved accuracy and stability. Here we demonstrate a cold-atom CPT clock using a high-contrast double-lambda CPT configuration. Doppler frequency shifts are explained using a simple model and canceled by interro- gating the atoms with counterpropagating light beams. We realize a compact cold-atom CPT clock with a fractional frequency stability of 4 x 10-11/√τ, thus demonstrating the promise of these devices. We also show that the long-term stability is currently limited by the second-order Zeeman shift to 2x10-12 at 1000s.
Donley, E.
, Esnault, F.
, Blanshan, E.
, Ivanov, E.
, E., R.
and Kitching, J.
(2013),
Cold-atom double-lambda coherent population trapping clock, Physical Review A, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913692
(Accessed October 13, 2025)