Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Transient Convection-Diffusion Modelling of Peak Temperature in Orthogonal Cutting

NIST Authors in Bold

Author(s): Timothy J. Burns; Steven P. Mates; Richard L. Rhorer; Eric P. Whitenton; Debasis Basak;
Title: Transient Convection-Diffusion Modelling of Peak Temperature in Orthogonal Cutting
Published: August 19, 2012
Abstract: Numerical finite-difference simulations of a two-dimensional transient fast convection-slow diffusion model of the temperature field in orthogonal cutting, due to Tlusty, have been shown to provide better predictions of the peak temperature during orthogonal cutting of AISI 1045 steel, than a commercial finite-element method (FEM) code that uses a conventional Johnson-Cook model for the material constitutive response. An analysis of the simpler Tlusty model is used to argue that the reason it gives better predictions than the FEM code is that the material has a stiffer response to shearing forces, under the conditions of rapid heating, high temperature, and high rate of deformation that are present in high-speed machining, than the response that is measured using conventional pre-heating methods, prior to compression testing, to obtain the constitutive response. Some recent experimental data from the NIST Pulse-Heated Kolsky Bar Laboratory are presented to support this hypothesis.
Proceedings: Proceedings of ICTAM 2012, the 23rd International Congress of Theoretical and Applied Mechanics
Location: Beijing, -1
Dates: August 19-24, 2012
Keywords: machining, orthogonal cutting, thermal modeling, AISI 1045 steel, Kolsky Bar
Research Areas: Math, Modeling
PDF version: PDF Document Click here to retrieve PDF version of paper (177KB)