Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: NIST Construction Automation Program Report No. 1: Non-Line-of-Sight (NLS) Construction Metrology

NIST Authors in Bold

Author(s): William C. Stone;
Title: NIST Construction Automation Program Report No. 1: Non-Line-of-Sight (NLS) Construction Metrology
Published: February 01, 1996
Abstract: This paper addresses the subject of automated metrology (surveying) for use on construction sites. Specifically, the research is directed to the development of a novel Non-Line-of-Sight (NLS) system with which the real-time position and orientation (attitude) of any object on a construction jobsite may be determined, irrespective of the presence of intervening obstacles that would otherwise render optical and/or electro-optical techniques useless. Tests were conducted using a specially configured broad-band, low-frequency spread-spectrum radar. The transmission and receiving antennae, which in normal radar are typically one and the same, were physically separated so as to create a system with a fixed broadcast unit and a "roving" receiver, whose range was to be determined relative to the transmission antenna by means of time-of-arrival measurements. Time domain response was synthesized by means of fourier theory from a broad spectrum of data sampled in the frequency domain. Numerous field experiments were performed in which typical construction site obstacles were placed between the transmitter and receiver with separation distances of up to 80 meters. The obstacles included a half-meter thick, heavily reinforced concrete wall, varying combinations of masonry block and brick up to more than a meter in thickness, and metal pre-fabricated wall panels. In all but the latter case, repeatable distances were obtained. Range detection was lost in the presence of extensive metal panels that contained no windows. However, the presence of even small openings permitted range acquisition. Sources of error, limits of resolution and accuracy, and factors affecting time of flight measurement are discussed.
Citation: NIST Interagency/Internal Report (NISTIR) - 5825
Keywords: construction automation, dielectric constant, diffraction, metrology, multipath, NLS, non-line-of-sight, penetration capacity, positioning system, propagation delay, spread spectrum radar, surveying
Research Areas: Building and Fire Research
PDF version: PDF Document Click here to retrieve PDF version of paper (16MB)