NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Traceable Calibration of a Critical Dimension Atomic Force Microscope
Published
Author(s)
Ronald G. Dixson, Ndubuisi G. Orji, Craig D. McGray, John E. Bonevich, Jon C. Geist
Abstract
The National Institute of Standards and Technology (NIST) has a multifaceted program in atomic force microscope (AFM) dimensional metrology. One component of this program, and the focus of this paper, is the use of critical dimension atomic force microscopy (CD-AFM). CD-AFM is a commercially available AFM technology that uses flared tips and two-dimensional surface sensing to scan the sidewalls of near-vertical or even reentrant features. Features of this sort are commonly encountered in semiconductor manufacturing and other nanotechnology industries. NIST has experience in the calibration and characterization of CD-AFM instruments and in the development of uncertainty budgets for typical measurands in semiconductor manufacturing metrology. A third generation CD-AFM was recently installed at NIST. The current performance of this instrument for pitch and height measurements appears to support our relative expanded uncertainty (k = 2) goals in the range of 1.0 × 10-3 down to 1.0 × 10-4. Additionally, a new generation of the NIST single crystal critical dimension reference material (SCCDRM) project is pushing toward feature widths below 10 nm, with the prospect of CD-AFM tip width calibration having expanded uncertainty (k = 2) below 1 nm.
Dixson, R.
, Orji, N.
, McGray, C.
, Bonevich, J.
and Geist, J.
(2012),
Traceable Calibration of a Critical Dimension Atomic Force Microscope, Journal of Micro/Nanolithography, MEMS, and MOEMS
(Accessed October 13, 2025)