Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Feedback Control of Optically Trapped Particles

NIST Authors in Bold

Author(s): Jason J. Gorman; Arvind K. Balijepalli; Thomas W. LeBrun;
Title: Feedback Control of Optically Trapped Particles
Published: December 17, 2011
Abstract: Optical trapping is a method for manipulating micro- and nanoscale particles that is widely used in biophysics and colloid science, among other areas. This method uses optical forces to confine the position of a particle to a localized region, which is referred to as a trap. This chapter examines the application of feedback control to optical trapping to improve particle localization, manipulation precision, and trap stability. Although control systems have been used in optical trapping for almost two decades, their perceived importance has largely been secondary to the scientific experiments that they support. As a result, only limited effort has been taken to explore the performance and stability of control systems in optical trapping. This chapter provides an introduction to the field and an overview of many of the issues relevant to a control systems perspective in optical trapping, including sensor and actuator performance, trap modeling, and instrument design. It also focuses on two control approaches (scan control and intensity control) that have been used to improve the localization of a particle with respect to the center of the trap. Many of the challenges in controlling optically trapped particles and future research directions for addressing these challenges are also described.
Citation: Control from MEMS to Atoms
Publisher: Springer, New York, NY
Pages: pp. 141 - 177
Keywords: optical trapping, Brownian motion, feedback control, Gaussian potential, nanoparticle
Research Areas: Optics, Nanotechnology, Instrumentation, Laser Physics
PDF version: PDF Document Click here to retrieve PDF version of paper (6MB)