NIST logo

Publication Citation: Morphological Changes Driven by Nanofibrous Scaffolds Induce Marrow Stromal Cell Osteogenesis

NIST Authors in Bold

Author(s): Carl G. Simon Jr; Kaushik Chatterjee; Christopher K. Tison; Girish Kumar; Patrick S. Pine; Marc L. Salit; Jennifer H. McDaniel; Marian F. Young;
Title: Morphological Changes Driven by Nanofibrous Scaffolds Induce Marrow Stromal Cell Osteogenesis
Published: October 11, 2011
Abstract: Cells are sensitive to tissue scaffold architecture and these cell-material interactions drive cell functions critical in tissue regeneration. Results presented here demonstrate that nanofiber scaffolds force primary human bone marrow stromal cells (hBMSCs) into a morphology that induces osteogenesis even in the absence of biochemical cues. We cultured hBMSCs on a library of scaffolds with systematically varied structure and composition. Scaffolds with nanofibrous architectures consistently induced hBMSCs to synthesize a bone-like matrix. Gene expression profiles of hBMSCs on nanofibers closely matched osteogenic controls where hBMSCs were cultured on flat surfaces with osteogenic supplements. hBMSCs on nanofibers assumed a spindly, elongated morphology identical to cells in osteoinductive medium on flat surfaces that was significantly different from the spread morphology on flat surfaces in the absence of osteoinductive factors. These results demonstrate that nanofiber scaffolds induce spontaneous osteogenic differentiation of hBMSCs by causing them to adopt an osteogenic morphology.
Citation: Nature Materials
Keywords: polymer scaffold; cell differentiation; stem cell; osteogenesis; nanofiber; cell morphology; tissue engineering; biomaterials
Research Areas: Polymers, Polymers, Nanomaterials, Nanomaterials, Medical Devices, Materials Science, Biomaterials, Biomaterials, Biomaterials, Bioscience & Health, Advanced Materials