Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Searching for applications with a fine-toothed comb

NIST Authors in Bold

Author(s): Nathan R. Newbury;
Title: Searching for applications with a fine-toothed comb
Published: April 01, 2011
Abstract: Frequency combs, like many ground-breaking technologies, are simple in concept; they results from the spectrum of any regular train of optical pulses. What is remarkable is that this simple picture can be actually realized in a number of different experimental systems. The original application of frequency combs was to compare an optical clock with another rf or optical clock. Such comparisons can reach 10-19 or lower fractional uncertainties, limited only by the Doppler shifts associated with the thermal contraction or expansion of the experimental apparatus [1-3]. However, the utility of frequency combs is not limited to optical clocks; they provide a broadband optical source with well-defined phase coherence across the spectrum and are being explored for a growing number of applications. The variety of applications and approaches are many and this commentary will touch on only a few of the more metrological ones, omitting such significant areas as attosecond laser sources [4]; the reader is directed to some of the many review articles for more details including the 2005 Nobel lectures of Hänsch and Hall [5-8].
Citation: Nature Photonics
Volume: 5
Pages: pp. 186 - 188
Keywords: frequency comb, metrology
Research Areas: Dimensional Metrology, Time and Frequency, Molecular Spectroscopy