NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Hongki Min, Robert McMichael, Jacques Miltat, Mark D. Stiles
Abstract
A vortex gyrating in a magnetic disc has two regimes of motion in the presence of disorder. At large amplitudes the vortex core moves quasi-freely through the disorder potential. As the amplitude decreases, the core can become pinned at a particular point in the potential and precess with a significantly increased frequency. In the pinned regime, the amplitude of the precession decreases more rapidly than in the quasi-free regime. In part, this decreased decay time is due to an increase in the effective damping constant and in part due to geometric distortion of the vortex. A simple model with a single pinning potential illustrates these two contributions.
Min, H.
, McMichael, R.
, Miltat, J.
and Stiles, M.
(2011),
Effects of disorder on magnetic vortex gyration, Physical Review B, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906934
(Accessed October 12, 2025)