Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles

Published

Author(s)

Vytautas Reipa, Jonghoon Choi, Nam S. Wang, Victoria M. Hitchins, Peter L. Goering, Robert Malinauskas

Abstract

In anticipation of the increased use of various forms of silver as an antimicrobial agent in medical devices, the objective of this study was to evaluate the in vitro hemolytic potential of silver nanoparticles in dilute human blood, and to relate particle properties to possible mechanisms of red blood cell damage. To relate hemolysis to physical and chemical properties, four different silver particle preparations were characterized using transmission electron microscopy, dynamic light scattering, Raman and energy dispersive X-ray spectroscopies, and zeta potential measurement. Silver ions released from the particles were measured using an ion-selective electrode and inductively coupled plasma mass spectroscopy. Aqueous silver particle suspensions with varying mass concentrations were mixed with heparinized human blood diluted in phosphate buffered saline. Silver nanoparticles (diameter 10 %) occurred at nanoparticle concentrations at and above 220 µg/ml. Hemolysis results were also dependent on the choice of dispersing media; silver nanoparticles mixed directly in buffered saline aggregated rapidly (and formed insoluble AgCl) and did not produce hemolysis. In contrast, particles dispersed in water before being exposed to saline or blood/plasma remained in solution longer and were able to induce hemolysis. The increased total surface area of nano-sized silver particles may contribute to increased levels of in vitro hemolysis through currently uncharacterized interactions of silver ions and nanoparticles with red blood cells.
Citation
Toxicological Sciences
Volume
123
Issue
1

Keywords

Nanoparticles , concentration, colloidal solution, extinction coefficient, dry mass, quartz crystal microbalance

Citation

Reipa, V. , Choi, J. , Wang, N. , Hitchins, V. , Goering, P. and Malinauskas, R. (2011), Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles, Toxicological Sciences, [online], https://doi.org/10.1093/toxsci/kfr149 (Accessed March 29, 2024)
Created June 7, 2011, Updated November 10, 2018