Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Cryogenic Fourier Transform Infrared Spectrometer from 4 to 20 Micrometers

NIST Authors in Bold

Author(s): Simon G. Kaplan; Solomon I. Woods; Timothy M. Jung; Adriaan C. Carter;
Title: Cryogenic Fourier Transform Infrared Spectrometer from 4 to 20 Micrometers
Published: August 20, 2010
Abstract: We describe the design and performance of a cryogenic Fourier transform spectrometer (Cryo-FTS) operating at a temperature of approximately 15 K. The instrument is based on a porch-swing scanning mirror design with active alignment stabilization using a fiber-optic coupled diode laser and voice-coil actuator mechanism. It has a KBr beamsplitter and has been integrated into an infrared radiometer containing a calibrated Si:As blocked impurity band (BIB) detector. Due to its low operating temperature, the spectrometer exhibits very small thermal background signal and low drift. Data from tests of basic spectrometer function, such as modulation efficiency, scan jitter, spectral range, and spectral resolution are presented. We also present results from measurements of faint point-like sources in a low background environment, including background, signal offset and gain, and spectral noise equivalent power, and discuss the possible use of the instrument for spectral characterization of ground-based infrared astronomy calibration sources. The Cryo-FTS is presently limited to wavelengths below 25 micrometers but can be in principle extended to longer wavelengths with changes in beamsplitter and detector.
Conference: SPIE Astronomical Telescopes and Instrumentation
Proceedings: Proceedings of SPIE
Pages: 8 pp.
Location: San Diego, CA
Dates: June 28-July 2, 2010
Keywords: calibration, cryogenic,Fourier-transform spectrometer, infrared, radiometry
Research Areas: Spectroradiometry
PDF version: PDF Document Click here to retrieve PDF version of paper (4MB)