Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Silicon Carbide Nanostructures: A Tight Binding Approach

NIST Authors in Bold

Author(s): Anthony D. Patrick; Xiao Dong; Thomas C. Allison; Estela Blaisten-Barojas;
Title: Silicon Carbide Nanostructures: A Tight Binding Approach
Published: June 28, 2009
Abstract: A tight-binding model Hamiltonian is newly parametrized for silicon carbide based on fits to a database of energy points calculated within the density functional theory approach of the electronic energy surfaces of nanoclusters and the total energy of bulk 3C and 2H polytypes at different densities. This TB model includes s and p angular momentum symmetries with non-orthogonal atomic basis functions. With the aid of the new TB model, minima of silicon carbide cage- like clusters, nanotubes, ring-shaped ribbons and nanowires are predicted. Energetics, structure, growth sequences, and stability patterns are reported for the nanoclusters and nanotubes. The band structure of SiC nanotubes and nanowires indicates that the band gap of the nanotubes ranges from 0.57 eV to 2.38 eV depending upon the chirality, demonstrating that these nanotubes are semiconductors or insulators. One type of nanowire is metallic, another type is semiconductor and the rest are insulators.
Citation: Journal of Chemical Physics
Volume: 130
Issue: 24
Pages: 7 pp.
Keywords: tight binding, nanoparticles, electronic structure
Research Areas: Nanostructured Materials, Nanotechnology, Nanoparticles