NIST logo

Publication Citation: Impact of molecular mass on the elastic modulus of polystyrene thin films

NIST Authors in Bold

Author(s): Jessica M. Torres; Christopher M. Stafford; Bryan D. Vogt;
Title: Impact of molecular mass on the elastic modulus of polystyrene thin films
Published: July 31, 2010
Abstract: Euler wrinkling was used to determine the elastic modulus at ambient temperature of polystyrene (PS) films of varying thickness and relative molecular mass (Mn). A range of Mn from 1.2 kg/mol to 990 kg/mol was examined to determine if the molecular size impacts the mechanical properties at the nanoscale. Ultrathin films exhibited a decrease in modulus for all molecular masses studied here compared to the bulk value. For Mn > 3.2 kg/mol, the fractional change in modulus was statistically independent of molecular mass and the modulus began to deviate from the bulk as the thickness is decreased below ≈50 nm. An order of magnitude decrease in the elastic modulus was found when the film thickness was ≈15 nm, irrespective of Mn below 3.2 kg/mol. However, an increase in the length scale for nanoconfinement was observed as the molecular mass was decreased below this threshold. The modulus of thin PS films with a molecular mass of 1.2 kg/mol deviated from bulk behavior when the film thickness was decreased below ≈ 100 nm. This result illustrates that the modulus of thin PS films does not scale with molecular size. Rather, the quench depth into the glass appears to correlate well with the length scale at which the modulus of the films deviates from the bulk, in agreement with molecular simulations from de Pablo and coworkers (Journal of Chemical Physics 2005, 122 (14), 144712) and recent experimental work by Vogt and coworkers (ACS Nano, 2009, 3 (9) 2677).
Citation: Polymer
Volume: 51
Issue: 18
Pages: pp. 4211 - 4217
Keywords: modulus; ultrathin; polymer; film; wrinkling
Research Areas: Polymers, Characterization, Nanomaterials, Advanced Materials
PDF version: PDF Document Click here to retrieve PDF version of paper (623KB)