NIST logo

Publication Citation: Grain boundaries exhibit the dynamics of glass-forming liquids

NIST Authors in Bold

Author(s): James A. Warren; Jack F. Douglas; Hao Zhang; David J. Srolovitz;
Title: Grain boundaries exhibit the dynamics of glass-forming liquids
Published: May 12, 2009
Abstract: Polycrystalline materials are composites of crystalline particles or grains separated by thin amorphous grain boundaries (GBs). Although GBs have been exhaustively investigated at low temperatures, at which these regions are relatively ordered, much less is known about them at higher temperatures, where they exhibit significant mobility and structural disorder and characterization methods are limited. The time and spatial scales accessible to molecular dynamics (MD) simulation are appropriate for investigating the dynamical and structural properties of GBs at elevated temperatures, and we exploit MD to explore basic aspects of GB dynamics as a function of temperature. It has long been hypothesized that GBs have features in common with glass-forming liquids based on the processing characteristics of polycrystalline materials. We find remarkable support for this suggestion, as evidenced by string-like collective atomic motion and transient caging of atomic motion, and a non-Arrhenius GB mobility describing the average rate of large-scale GB displacement.
Citation: Proceedings of the National Academy of Sciences of the United States of America
Volume: 106
Issue: 19
Pages: pp. 7735 - 7740
Keywords: glass formation; grain-boundary mobility; molecular dynamics;polycrystalline materials; string-like collective motion
Research Areas: Materials Properties
PDF version: PDF Document Click here to retrieve PDF version of paper (1MB)