Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Fitting Spheres to Range Data from 3D Imaging Systems

NIST Authors in Bold

Author(s): Marek Franaszek; Geraldine S. Cheok; Kamel S. Saidi; Christoph J. Witzgall;
Title: Fitting Spheres to Range Data from 3D Imaging Systems
Published: October 01, 2009
Abstract: Two error functions used for nonlinear Least Squares (LS) fitting of spheres to range data from 3D imaging systems are discussed: orthogonal error function and directional error function. Both of the functions allow unrestricted gradient-based minimization and they were tested on more than 40 datasets collected under different experimental conditions (e.g., different sphere diameters, instruments, data density, and data noise). It was found that the orthogonal error function results in two local minima, and the outcome of the optimization depends on the choice of starting point. The centroid of the data points is commonly used as the starting point for the nonlinear LS solution. The choice of starting point is sensitive to data segmentation, and for some sparse and noisy datasets can lead to a wrong minimum. The directional error function has only one minimum. Therefore, it is not sensitive to the starting point and this makes it more suitable for applications which require fully automated sphere fitting. Such situations arise when 3D imaging systems are used in a fully automated environment where sphere targets are used for data registration.
Citation: IEEE Transactions on Instrumentation and Measurement
Volume: 58
Issue: 10
Pages: pp. 3544 - 3553
Keywords: sphere fitting, orthogonal error function, directional error function, 3D imaging systems, target-based registration
Research Areas: Construction Integration and Automation
PDF version: PDF Document Click here to retrieve PDF version of paper (689KB)