Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Competition Between Self-Assembly and Surface Adsorption

NIST Authors in Bold

Author(s): Jacek Dudowicz; Jack F. Douglas; Karl Freed;
Title: Competition Between Self-Assembly and Surface Adsorption
Published: February 25, 2009
Abstract: We investigate a minimal equilibrium polymerization model of the general competition between self-assembly on a boundary and in solution that arises when an assembling system is near a boundary. Adsorption generally occurs upon cooling, but assembly (equilibrium polymerization) may arise either upon cooling or heating. Both cases are shown to exhibit di erent manifestations of the coupling between adsorption and self-assembly. When both assembly and adsorption proceed upon cooling, a simply change in the ratio of the enthalpy of adsorption to the enthalpy of assembly in solution can switch the system between a predominance of of self-assembly in solution and a dominance of assembly on the substrate. If assembly occurs upon heating and adsorption upon cooling, as in many self-assembling proteins in aqueous solution, then a self-assembly analog of a closed loop phase boundary is found. In particular, the order parameter for assembly on the surface exhibits a peak as a function of temperature. As demonstrated by examples, the coupling between surface adsorption and self-assembly provides a powerful means of switching self-assembly processes on and off. Understanding and controlling this phenomenon will be useful in designing and directing self-assembly processes on surfaces for nanomanufacturing applications and in developing treatments for diseases arising from pathological adsorption-induced assembly.
Citation: Journal of Chemical Physics
Volume: 130
Issue: 8
Keywords: adsorption, self-assembly, adsortion-induced assembly, equilibrium polymerization, amyloid fiber formation
Research Areas: MSEL
PDF version: PDF Document Click here to retrieve PDF version of paper (284KB)