Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Failure Modes in Ceramic-Based Layer Structures: A Basis for Materials Design of Dental Crowns

NIST Authors in Bold

Author(s): Brian R. Lawn; Sanjit Bhowmick; M T. Bush; T Qasim; E D. Rekow; Yang Zhang;
Title: Failure Modes in Ceramic-Based Layer Structures: A Basis for Materials Design of Dental Crowns
Published: June 30, 2007
Abstract: A research program on failure modes induced by spherical indenters in brittle layer structures bonded to polymeric substrates, in simulation of occlusal function in all-ceramic dental crowns, is surveyed. Tests are made on model flat and curved layers bonded onto a dentin-like polymer base, in bilayer (ceramic/polymer) and trilayer (ceramic/ceramic/polymer) configurations. All-transparent systems using glass as a porcelain-like outer or veneer layer and sapphire as a stiff and strong core support layer enable in situ observation of the entire evolution fracture modes in the brittle layers, from initiation through to failure. With the fracture modes identified, tests are readily extended to systems with opaque polycrystalline dental core ceramics, notably alumina and zirconia. A variety of principal failure modes is identified: outer and inner cone cracks developing in the near-contact region at the top surface; radial cracks developing at the bottom surface along the loading axis; margin cracks from the edges of dome-like structures. All of these modes are enhanced in cyclic loading by time-cumulative slow crack growth, but inner cones are subject to especially severe mechanical fatigue from hydraulic pumping of water into the crack fissures. Conditions under which each mode may be expected to dominate, particular in relation to geometrical variables (layer thickness, contact radius) and relative material properties, are outlined. Clinical issues such as crown geometry, overload versus fatigue failure, role of residual stresses in fabrication, etc. are addressed.
Citation: Journal of the American Ceramic Society
Volume: 90
Issue: 6
Pages: pp. 1671 - 1683
Keywords: dental crowns,fatigue,fracture modes,layer structures,material design,occlusal
Research Areas: Characterization, Ceramics
PDF version: PDF Document Click here to retrieve PDF version of paper (3MB)