NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Intermolecular Potential and Second Virial Coefficient of the Water-Hydrogen Complex
Published
Author(s)
M P. Hodges, R J. Wheatley, G K. Schenter, Allan H. Harvey
Abstract
We construct a rigid-body (5-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and using this, two minima are found: the global miniumum has C2v symmetry, with the hydrogen molecule action as a proton donor to the oxygen atom on water, where the OH bond and H2 are in a T-shaped configuration. The SPT global minimum is bound by 1097 muEh(Eh=4.359744 X 10-18 J). Our best estimate of the binding energy, from a complete basis set exrtapolation of coupled cluster calculations, is 107.1 muEh. The fitted surface is used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). Three complementary methods are used to quantify quantum statistical mechanical effects that become significant at low temperatures. We compare our results with experimental data, which are available over a moderate temperature range (230-700 K). Generally, good agreement is found, but the experimental data are subject to larger uncertainties.
Hodges, M.
, Wheatley, R.
, Schenter, G.
and Harvey, A.
(2004),
Intermolecular Potential and Second Virial Coefficient of the Water-Hydrogen Complex, Journal of Chemical Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=831920
(Accessed October 13, 2025)