NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Thermal Decomposition Kinetics of the Aviation Turbine Fuel Jet-A
Published
Author(s)
Jason A. Widegren, Thomas J. Bruno
Abstract
As part of a larger-scale thermophysical and transport property measurement project, the global decomposition kinetics of the aviation turbine fuel Jet-A was investigated. Decomposition reactions were performed at 375, 400, 425, and 450 °C in stainless steel ampule reactors. At each temperature, the extent of decomposition was determined as a function of time by gas chromatography. These data were used to derive global pseudo-first-order rate constants that approximate the overall decomposition rate of the mixture. Decomposition rate constants ranged from 5.9 10-6 s-1 at 375 °C to 4.4 10-4 s-1 at 450 °C. The kinetic data were used to derive Arrhenius parameters of A = 4.1 1012 s-1 and Ea= 220 kJ•mol-1. In addition to the decomposition kinetics, we have also done a GC-MS analysis of the vapor phase that is produced by the thermal stress applied during the decomposition measurements.
Widegren, J.
and Bruno, T.
(2008),
Thermal Decomposition Kinetics of the Aviation Turbine Fuel Jet-A, Industrial and Engineering Chemistry Research, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50620
(Accessed October 13, 2025)