NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Anisotropic elastic properties of nanocrystalline nickel thin films
Published
Author(s)
Donna C. Hurley, Roy H. Geiss, N Jennett, Malgorzata Kopycinska-Mueller, A Maxwell, Jens Mueller, David T. Read, J Wright
Abstract
As length scales continue to shrink, new tools are needed to measure mechanical properties. We are developing two such tools using different nondestructive acoustical techniques. Surface acoustic wave spectroscopy (SAWS) uses laser-ultrasonic methods to measure the phase velocity dispersion relation over several hundred megahertz. SAWS can accurately assess sub-micrometer-thick films, although it interrogates a centimeter-sized area. In contrast, atomic force acoustic microscopy (AFAM) has lateral spatial resolution of tens of nanometers. AFAM involves acoustical excitation of flexural resonances in the cantilever of an atomic force microscope. Here, we present AFAM and SAWS results for nickel films with thicknesses from 50 to 800 nm. For the thickest film, acoustical data are compared to results from microtensile testing and nanoindentation. Results are in only fair agreement if elastic isotropy is assumed. However, very good agreement is achieved using a transversely isotropic film model. This is consistent with a preferential <111 > film texture, confirn'led by x-ray analysis. We also discuss how SAWS results can be analyzed to obtain other information such as film thickness. Our results demonstrate how comparing results from several techniques yields more information about the film properties than that provided by anyone measurement.
Hurley, D.
, Geiss, R.
, Jennett, N.
, Kopycinska-Mueller, M.
, Maxwell, A.
, Mueller, J.
, Read, D.
and Wright, J.
(2006),
Anisotropic elastic properties of nanocrystalline nickel thin films, Journal of Materials Research, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50050
(Accessed October 14, 2025)