NIST logo

Publication Citation: Contact Induced Crystallinity for High Performance Soluble Acene-Based TFTs

NIST Authors in Bold

Author(s): David J. Gundlach; James Royer; Behrang H. Hamadani; Lucile C. Teague; Andrew J. Moad; Oana Jurchescu; Oleg A. Kirillov; Lee J. Richter; James G. Kushmerick; Curt A. Richter; Sungkyu Park; Thomas Jackson; Sankar Subramanian; John E. Anthony;
Title: Contact Induced Crystallinity for High Performance Soluble Acene-Based TFTs
Published: February 17, 2008
Abstract: Organic electronics present a tremendous opportunity to significantly impact the functionality and pervasiveness of large-area electronics. However, the lack of low-temperature low-cost deposition and patterning techniques limits the potential for the significant reductions to manufacturing costs which are viewed as critical to commercializing this field of research. We report on soluble acene-based organic thin film transistors (OTFTs) where the microstructure of as-cast films can be precisely controlled via interfacial chemistry. Chemical optimization of the source/drain contact interface is a novel route to self-patterning of soluble organic semiconductors and enables the growth of highly ordered regions along opposing contact edges which extend into the transistor channel. The unique film forming properties allows us to fabricate high performance OTFTs and deterministically study the influence of the film microstructure on the electrical characteristics of devices. These studies provide insight to charge injection and transport at the microscopic scale.
Citation: Nature Materials
Pages: 6 pp.
Keywords: Microscopy;Microstructure;Mobility;Organic Semiconductor;Organic Transistor
Research Areas: Nanoelectronics and Nanoscale Electronics
PDF version: PDF Document Click here to retrieve PDF version of paper (785KB)