Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Tunneling characteristics and low-frequency noise of high-Tc superconductor/noble-metal junctions

NIST Authors in Bold

Author(s): Yizi Xu; John (Jack) W. Ekin;
Title: Tunneling characteristics and low-frequency noise of high-Tc superconductor/noble-metal junctions
Published: March 22, 2004
Abstract: We report extensive measurements of transport characteristics and low-frequency resistance noise of c-axis yttrium-barium-copper-oxide (YBCO)/Au junctions. The dominant conduction mechanism is tunneling at low temperatures. The conductance characteristic is asymmetric, and the conductance minimum occurs at a nonzero voltage. These features can be qualitatively explained by modeling the YBCO/Au interface with a Schottky barrier. The model shows that the YBCO surface behaves like a p-type degenerate semiconductor, with a Fermi degeneracy of about 0.1 eV. The barrier height is approximately 1.0 eV. We present evidence that interface states and disorder play an important role in determining the conductance characteristics. Low-frequency noise measurements of these junctions reveal that junction noise is dominated by resistance fluctuations with a 1/f-like power spectrum over a wide range of temperature and bias voltage. For temperatures between 4.2 and 77 K, the junction noise can be parameterized in terms of a normalized resistance fluctuation: δR/R{approximately equal}6.3 × 10-4/√f, in units of Hz1⁄2, where f is the center frequency of the measurement bandwidth. At f= 10 Hz, for example, it is 2 × 10-4 Hz-1⁄2. This noise figure should prove to be useful for engineering design of high-T-c electronics. A more detailed analysis shows that at low temperatures the noise spectrum is characterized by random telegraph signals with a Lorentzian power spectrum, which can have a distribution of corner frequencies that mimics a 1/f dependence. The random telegraph signals provide evidence for the existence of localized states.
Citation: Physical Review B (Condensed Matter and Materials Physics)
Volume: 69
Issue: 104515
Pages: pp. 104515-1 - 104515-9
Keywords: high-Tc superconductors,junctions,noble-metal,noise,tunneling,Y-Ba-Cu-O,YBCO
Research Areas: Electromagnetics
PDF version: PDF Document Click here to retrieve PDF version of paper (191KB)