Measurement Assurance Case Study: Nanofiber Diameter

Carl G. Simon, Jr., Ph.D.
Biosystems \& Biomaterials Division
National Institute of Standards \& Technology
Gaithersburg, MD, U.S.A. carl.simon@nist.gov

Contributors:

Nathan Hotaling, Kapil Bharti, Haydn Kriel

Strategies for Achieving Measurement Assurance

- Underpins development of documentary standards
- Measurement assurance strategies for measuring nanofiber diameter
- 2013 ASTM Workshop on Scaffold Standards \& Measurements (Indianapolis, IN, USA): \#1 need identified was "better measurements for scaffold structure"

DiameterJ: Automated Image Analysis

- Current practice is manual measurement using a line tool in imaging software (ImageJ)
- Slow (10 min/image) \& low n
- Human bias

Increasing " n " (number of measurements) enables better statistics \& better modeling of the probability distribution function (histogram)

Automation increases the number of measurements \& reduces human bias

103 Synthetic Images

MATERIAL MEASUREMENT LABORATORY

Reference Materials

Steel Wire with Known Diameter

- Narrow gauge stainless steel wire (HSM Wire)
- Manufacturer measures dia. with resistivity \& calipers
- Wire dia. verified with light microscopy \& human manual segmentation in SEM

Reference Materials

Steel Wire with Known Diameter

48 Gauge Steel Wire

Orthogonal
 Measurements
 Orthogonal Measurements

Orthogonal Measurements: Confidence in a measurement result is enhanced when multiple measurement methods give a similar value of a material property

- Orthogonal Measurements
- More precise than the measurement that you are trying to assure (slower, expensive, harder)
- Based on a different physical principle
- Synthetic images
- Counted pixels by hand (very IMPORTANT, MSPaint didn't work)
- Steel reference wires
- Manufacturer measured resistivity
- Manufacture measured with calipers
- Optical imaging of fibers
- Human manual measurement with ImageJ line tool in SEMs
- Electrospun polymer fibers
- Human manual measurement with ImageJ line tool in SEMs

```
Sensitivity
    Testing
(Design of
    Exps.)
```


Sensitivity Testing

 (Ruggedness Testing) (Design of Experiments)Sensitivity Testing can identify key measurement parameters that must be controlled to make the measurement more reliable

103 synthetic images:

- Different diameters
- Straight vs curved
- Aligned vs disordered
- Multiple diameters

(Failed on 10 Diameters)

Process Controls

Process

Controls

Process Controls are procedures to monitor critical points in a measurement process to check that steps are performing according to specifications

Visually compare raw image with:

- Segmentations
- Euclidian distance map
- Histogram (bimodal?)
- DiameterJ results

Euclidian Distance Map

Raw Image

- To help identify errors, DiameterJ has a locator tool which labels locations where fibers diameters of a given range were found
- Fibers along image edge, poor segmentation or fiber overlap can yield errant measurements

Red Lines $=1$ px to 255 px

Red Lines $=40 \mathrm{px}$ to 255 px

Performance

 Specifications
Performance Specifications

Performance Specifications are established by the user from sensitivity testing \& charting process control data; if test specifications are not met, then results can not be used in decision-making

- Fibers must be at least 10 px in diameter
- Fibers should not be greater than 10% of the smallest dimension of the image
- Example: SEM imaging of 500 nm fibers should be conducted at a magnification between 1500X and 10000X for a 1280 px by 960 px image capture
- Visual Examination: Fiber diameters in raw images qualitatively agree with segmentations \& DiameterJ results
- For multimodal distributions, modes must be separated by more than 3 px
- In the system tested, 6 fiber dia. peaks is maximum \# of peaks for 1 image
- If you don't meet these specifications...then test result should be questioned (possibly rejected)

Web Training Module

Operator Training

Operator Training improves measurement precision to improve comparability between different operators \& labs

Web training where users download \& analyze images with DiameterJ

Understanding Output from DiameterJ
Fill out the below information and begin the 20 question Quiz only AFTER reading the documents found at the links below.

* Required

Participant Number *
Save this number somewhere. DO NOT LOSE THIS NUMBER. You will need it later. 953128

Installation and Use of DiameterJ- https://goo.g//4e5:0P
\checkmark

Output of DiameterJ - https://goo.ol/1er0L

Inter-
Laboratory
Comparison
Study

Comparing Operator Performance Before \& After Training

Inter-Laboratory Comparisons asses the robustness of an assay across different labs \& results are used to refine the protocol

- IN PROGRESS: Intra-lab comparability with Matt Becker Lab (Univ. of Akron, USA), 17 students analyzing images before/after training to assess improvement
- Test images of reference wires (48 ga. \& 50 ga .)
- Protocol Refinement: Keep magnification constant

Inter-

Laboratory
Comparison
Study

Comparing Operator Performance Before \& After Training

Inter-Laboratory Comparisons asses the robustness of an assay across different labs \& results are used to refine the protocol

- IN PROGRESS: Intra-lab comparability study where participants analyze images before/after training to assess improvement
- Test images are mixture of 48 ga. \& 50 ga. Wire
- NEW SPECIFICATION: Use constant magnification

- Before Training: 2 of 4 operators identified the bimodal distribution
- After Training: 4 of 4 operators identified the bimodal distribution

Github, Inc. [US] https://github.com/NHotaling/DiameterJ					
GitHub This repository Search	Explore	Features	Enterprise	Pricing	
NHotaling / DiameterJ				© Watch	1
ImageJ or FIJI plugin for Analysis of images for fibers					
(1)17 commits \quad \& 1 branch	$\bigcirc 0$ releases		\% 1 contributor		
48 Branch: master - DiameterJ/+					:

Dissemination

Web:

- http://imagej.net/DiameterJ
- http://fiji.sc/DiameterJ
- https://github.com/NHotaling/DiameterJ

Papers:

- Hotaling NA, et al. (2015) DiameterJ: a validated open source nanofiber diameter measurement tool. Biomaterials 61, 327-338
- All Data \& Images: Hotaling NA et al. (2015) Dataset for the validation and use of DiameterJ, an open source nanofiber diameter measurement tool. Data in Brief, in press.
ImageJ 2.XX) and FIJI)

$$
\begin{array}{|l|l|}
\text { Author } \\
\text { Maintai }
\end{array}
$$

$$
\begin{aligned}
& \text { Maintaii } \\
& \text { File }
\end{aligned}
$$ Nathan Hotaling, Nath

Nathan Hotaling Image 1.48 a to $2 . \mathrm{XxX}$ - Downoad v. 1.094 .en
FIII any version - Download v. 1.014 as

Source

 SourceInitial release
Latest version
Source Code
February 2015
September $22^{\text {nd }}, 2015$
$\checkmark \times .003$ (first version released publicly)

2, and FIJI developed at the National Institute of Standards and Technology. DiameterJ is a validated nanofiber diameter characterization tool. DiameterJ is able to analyze an image and find
the diameter of nanofibers or microfibers at every pixel along a fibers axis and produces a histogram of these diameters. Included with this histogram are summary statistics such as mean fiber diameter and
most occurring fiber diameter (mode) Diameter also bundles most occurring fiber diameter (mode). DiameterJ also bundles Orientation J eral for a complete analysis of fiber orientation within an
image as well as the "Analyze Particles" function built into Image $/ / 5$. image as well as the "Analyze Particles" function built into Image $\mathrm{JJ} / \mathrm{FIJI}$
to analyze pore space within scaffolds and produce summary statistics
for pores for pores.

Contents
[hide]

Summary

- "product consistency \& lack of standards is possibly the single greatest challenge facing the field"
- Approach measurement process as a manufacturing process
- Measurement Assurance: Evaluate \& reduce variability in order to improve confidence results to support decision-making (before writing a standard)

Thank you!

