

CRITICAL NATIONAL NEED IDEA

Jerry Zhu, Ph.D.
UCSoft

2727 Duke Street, Suite 602
(Telephone) 703 461 3632

Jerry.zhu@ucsoft.biz

Title

Save Billions in Software Industry Each Year with Disruptive Innovation

Keywords

Software engineering, methodology, paradigm, age, transformation, infrastructure, productivity

mailto:Jerry.zhu@ucsoft.biz

Save Billions in Software Industry Each Year with Disruptive Innovation

Jerry Zhu, Ph.D.
Jerry.zhu@ucsoft.biz

There has never been shortage in the new stream of software processes, from chaotic process to unified
process to agile methods. Each process claims to have solved the problems of its predecessors but inevitably
has also introduced new problems often revealed to the users and not the authors of the new process. This
paper describes why a novel discipline and associated technology can be developed to replace today’s
myriad methodologies and dissolve all the problems manifested in today’s software industry. It proposes new
concepts concerning software and its development and presents unprecedented opportunities and challenges
to all enterprises.

All life is problem solving. Our mind-set, the way we see
problems, depends not on what is out there but on what we
have been “trained” to “see.” We may discard—indeed we
can be blind to—anomalies that do not fit. The pattern,
which shapes our thinking, grants a particular perceptual
blindness and rigidity to our perceptions of the world. This
pattern of seeing is called perspective. The world
perspective is a function of two factors. On the one hand, it
depends on the material of experience, which is its
foundation; on the other hand, it depends on the conceptual
apparatus and the meaning rules that are bound up with it.
A change in conceptual apparatus is reflected in a change
in problems that one solves on the basis of the same data of
experience.

Related to perspective is paradigm. A paradigm is a set of
beliefs or basic assumptions about reality, normally
beneath the level of awareness and therefore mostly never
questioned. The paradigm is the lens through which we
look at the world; therefore, it determines our perspectives.
Perspectives revealed through one lens are normally
invisible through a different lens. To change our strategy is
to change our perspective. A change of perspective without
a change of its paradigm is the “orthodox novelty,” more
of the same thing. A change in perspective based on the
change of its underlying paradigm is an “emergent
novelty,” a change in “species.”

A company’s production process, the process that produces
products or services, may be defined along three
dimensions:
• Skills: Processes take place between individuals or

organizational units as individual or collective skills.
• Objects: Processes result in manipulation of objects.

These objects could be Physical or Informational.
• Activities: Processes could involve two types of

activities: Managerial (e.g., develop a budget) and
Operational (e.g., fill a customer order).

Any organized human activity gives rise to two
fundamental and opposing requirements: the division of
labor into various tasks to be performed and the
coordination of these tasks to accomplish the activity. The
design of software methodology and the structure of
project organization, can be defined simply as the way the
labor is divided into distinct tasks and the coordination
among these tasks. Coordination based on skills, objects,
activities correspond to three categories of methodology:
lightweight, rightweight, and heavyweight. Heavyweight
methodology defines tasks and their order of execution,
bears responsibilities and specifies rules. Lightweight
methodology places the responsibility back on people
who make decisions momentarily on how the process
should proceed. A change of coordination based on
different dimension is a change in paradigm. A change in
task definition within the same coordination is a change in
perspective, hence a change of conceptual apparatus.

The most important change taking place today is in the
way we try to understand the world and in our conception
of its nature. If our views of the world were out of date,
our theories and the behaviors they drive would be out of
date. Accordingly, we’d continue to miss opportunities
and risk serious mistakes as reality and an old way of
thinking used to interpret it continue to diverge. The
software industry has been experiencing failure
methodologies, as demonstrated by the high failure rate of
software projects. The so-called agile methodologies are
good tries, but they are still not the right solutions,
because they cause new problems. The mistake is that
software development has been based on wrong
paradigms. This paper shows why current paradigms fail
and a new paradigm needs to emerge. Organizations and
nations that are capable of discerning their passing
paradigms and constructing new theories based on the
emerging paradigm will become the economic, cultural
and political superpowers of the 21st century.

mailto:Jerry.zhu@ucsoft.biz

The History and Present of Software Engineering
The term software engineering (SE) was coined at the 1968
NATO conference to introduce software manufacture to
the established branches of engineering design. It was a
deliberately provocative term, implying the need for
software manufacture to be based upon theoretical
foundations and practical disciplines that were traditionally
used in established branches of engineering. It was
believed during the conference that software designers
were in a position similar to architects and civil engineers.
Naturally, we should turn to these ideas to discover how to
attack the design problem. The generic design process is to
determine the design’s objectives in terms of specific
requirements, which will be called functional requirements.
To meet the functional requirements, a physical
embodiment characterized in terms of design parameters
must be created. Engineering design is defined as mapping
from the functional space to the physical solution space.
Design activities of both fields may be approximately
mapped: product planning to requirements, conceptual
design to analysis, embodiment design to design and detail
design to implementation. Both engineering design and SE
clearly differentiate between problem and solution spaces
and offer techniques and representations for exploring,
bounding and structuring those spaces. Both fields rely on
two categories of requirements: behavioral objectives and
quality constraints. Both also depend heavily on
technological and economic constraints as success criteria.

There are also significant differences between the two. In
traditional engineering there is a clear consensus as to how
things should be built, which standards should be followed
and which risks must be taken care of. If an engineer does
not follow these practices and something fails, he or she
gets sued. In SE, there is no such consensus and everyone
follows his or her own methods. A huge diversity of design
methodologies exists in the market today. Project fitness
and effective use of methodologies become critical to the
success or failure of software projects. There have been
numerous examples of projects failing due to an improper
methodology being used. For some organizations, the
problem is the inadequacy of current methodologies,
prompting them to keep looking for different and better
ones. However, it has also been found that software
engineers’ adherence to any methodology, far from
facilitating development, only makes the design more
problematic. Developers ignore certain aspects of
methodologies not from a position of ignorance, but on the
more pragmatic basis that certain elements are not relevant
to the developments they face.

Four decades after SE was first introduced as a model for
the field of software development in 1968, issues
surrounding software production remain unresolved.
NATO conference attendees did not assert that software
development is actually engineering, but rather, they

presupposed that it would be fruitful to consider software
development to be engineering for whatever benefits that
might bring. The outcomes of the field of SE do not
resemble those of any other branches of engineering in
terms of success rate, error-laden deliverables, intellectual
rework and subjective uncertainty.

There is no correlation between project success and the
use of the tidy “engineering” development process.
Studies have shown that some messy-looking projects
succeeded quite nicely, while many process-oriented
projects fail quite badly. Developers find no practical
advice from the SE model to solve problems on live
projects but place their trust in unproven in-house
methods. Adherence to methodology has been far from
facilitating the development process and has only made
the design process more problematic. Methodology
adoption is a “fetish of technique” rather than a solution
to the design problem at hand.

According to The CHAOS Report, the success rate for
software projects was a mere 34 percent in 2003. The
remaining 66 percent either failed or were severely
challenged. “Software failures are unprejudiced: they
happen in every country to large companies and small; in
commercial, nonprofit and governmental organizations;
and without regard to status or reputation. Of the IT
projects that are initiated, from 5 to 15 percent will be
abandoned before or shortly after delivery as hopelessly
inadequate. Many others will arrive late and over budget
or require massive reworking. Few IT projects, in other
words, truly succeed. The cost of litigation from irate
customers suing suppliers for poorly implemented
systems must be considered. The yearly tab for all these
costs conservatively runs somewhere from $60 billion to
$70 billion in the U.S. alone.” (IEEE Spectrum,
September 2005) “Moreover, software errors cost the U.S.
economy $59.5 billion annually and 80 percent of
development costs go to identifying and correcting
defects. In fact, few products (of any kind) other than
software are shipped with such a high rate of errors.”
(NIST 2003) SE has failed to contain the inherent
complexity arising from frequent analysis paralysis,
which leads to confusion as to how the software design
process may effectively and efficiently proceed. Both the
theory and practice of what constitutes a desirable SE
design process remains poorly understood. It appears that
as fast as SE makes progress, the demand made on it
continues to increase beyond its capabilities. Given the
widespread problems evidenced in the field of SE, was it
valid for software designers to attempt to emulate their
engineering design counterpart? To answer this question,
we need to look deeper into the terms “engineering” and
“machine” and compare them with software.

The Fundamental Problem of SE
The industrial revolution is concerned with the
mechanization of work. There are two concepts: work and
machine. Work is real and reduces to atoms. An atom has
two properties: mass and energy. Work is defined as
applying energy to matter to change the property of the
matter. Machine is defined as any object used to apply
energy to matter. To design any work is to analyze it: to
reduce the work into work elements, mechanize those work
elements by assigning machines to them and assign to
people those that cannot be mechanized. What we then
have is a network of work elements performed by men and
machines. We call this network manufacturing.

The input and output of manual work are material objects
subject to the constraints of natural law, the law of physics.
It is the natural law that dictates how work should be
coordinated. That is, the movement of manual labor should
be congruent with the movement of objects, governed by
the natural constraints, into the final product. Frederick
Taylor, the founder of scientific management, destroyed
the romance of work. Instead of a “noble skill.” it becomes
a series of simple motions. Hence the coordination
mechanism of manual work is based on the activity as the
scientific way of organizing work. The motion of objects is
translated into a prescribed network of activities and their
interactions. Taylor changed the paradigm from
coordination based on skills to coordination based on
activities and accordingly revolutionized the world of
manufacturing.

All engineering design methodologies belong to one class
of machine design system. Any design methodology of this
class resides between two ends: art and science. The
control of the process of production begins with
craftspeople. It is implicit that a craftsperson accumulates
knowledge and by doing so gains control over the
interaction between the tool and the material being
transformed. If one wanted to automate a production
process, then the accumulated knowledge would have to be
embodied—hardwired—into the manufacturing system. A
halfway stage would require that the knowledge be
partially embodied in the machinery and partially
embodied in the system operators. The knowledge they
would have of operating would be gained from
assimilating operating manuals and by doing. Control of
the process would be based on the knowledge of the nature
and dynamics of the interrelationships between the system
and its environment and between the components of the
system and the input. As we learn more about the process,
about the old variables, new variables emerge from the
mists of ignorance. Process knowledge progresses from
pure art (no variables are identified) to pure science (all
variables are identified and understood) as we move from a
low- to a high-knowledge stage. To gain perfect control,
we need to have perfect knowledge.

There is a natural relationship between degree of
procedure and knowledge stage. If we use a high degree
of procedure in a low-knowledge-stage production
process, unanticipated problems will crop up frequently.
If we use a low degree of procedure in a high-knowledge-
stage production process, it is inefficient to use lots of
expertise to carry it out.

SE is rooted in the machine paradigm. Making software is
like making machines. The first step of software design is
to propose a collection of product features—what the
system should do—and then map them into the solution
space. Software, like machines, is functionally
decomposed into features that are then allocated to the
resulting components. The functional decomposition also
becomes anchored in contracts, subcontracts and work-
breakdown structures. These product features are
equivalent to process variables in manufacturing. The
Waterfall approach is at the end of science and the Agile
approach is at the end of art. It is well known that product
features can’t be completely known up front. The
Waterfall model uses a high degree of procedure (from
requirement to analysis to design to implementation to
test), assuming all product features can be known up
front. The Agile approach uses zero degree of procedure,
assuming no product features can be known up front.
Therefore, unlike traditional engineering, SE mostly
mismatches the degree of procedure and the knowledge
stage, resulting in either higher rework or lower
efficiency. Both cause huge waste of resources.

Can SE within the current paradigm evolve to increase a
knowledge stage that matches the degree of procedure
like traditional engineering does? The answer is no. The
success of traditional engineering, the ability to evolve
from art to science lies in its underpinnings. Specifically,
the fundamental underpinnings of branches of traditional
engineering are embedded in physical principles. The
knowledge of underpinnings is scientific knowledge, and
the knowledge of design is engineering knowledge. The
task of engineers is to apply both types of knowledge to
the solution of technical problems. They then optimize
these solutions within the requirements and constraints of
the project. For example, electronic engineers apply their
scientific knowledge of electronic properties of silicon
and their engineering knowledge of circuit design to build
circuits. Mechanical engineers apply their scientific
knowledge of mechanical properties of engineering
materials and their engineering knowledge of mechanical
design to build machines. For an engineer in any
engineering branch to be successful in his or her career,
he or she must master the corresponding scientific
knowledge through education and accumulate engineering
knowledge through practicing the profession. Without a
solid knowledge of the material mechanics—its

underpinnings—civil engineers would build bridges that
they could not guarantee.

Engineering activity is how engineers decipher problems
within the set of constraints imposed by the medium in
which they are working. The design process creates design
elements that are explained based on the corresponding
scientific knowledge. For the machine to be workable, its
underpinning—the law of nature—must be stable and does
not change. Because the design parameters of a machine
are based on the explanations of the law of nature, a
change of natural law would mean a change of design
condition. An airplane would not be workable if gravity or
air density would continuously change. Stable
underpinning implies objective scientific knowledge.
Design is scientific when the explanation of the design
elements based on the scientific knowledge is objective.

With SE, the fundamental underpinning is essentially
personal opinion embodied in user requirements. It is well
known that users do not know what the requirements are.
User requirements are speculated and fed into the
development cycle and tested in the form of deliverables.
As a result, software components, unlike particulars found
in nature, are not constrained by natural laws. The lack of
natural constraints and physical dimensions in software
implies that solutions that make tangible material meet our
expectations do not apply. Software engineers, trained in
the knowledge of design (e.g., information engineering),
do not have the scientific knowledge on which design
relies. Due to the lack of complexity-limiting natural
constraints, software, if left otherwise unchecked, will tend
to expand arbitrarily, toward the only constraint left—the
capacity of our brains. This lack of objectivity raises
people’s expectations beyond all reason of what can and
should be achieved within a project’s time and resource
limitations. Therefore SE, within its current paradigm, will
not progress to same maturity as that of traditional
engineering and will remain guesswork rather than
disciplined inquiry. The only hope is for a change of
paradigm, a change from coordination based on skills or
activities to one based on informational objects.

The Future of SE
The most important contribution of management in the
20th century, according to Peter Drucker, was to increase
manual worker productivity fiftyfold. Taylor worked as a
manual worker and studied manual work. Since that time,
manual worker productivity began its unprecedented rise—
3½ percent per annum compounded—which means
fiftyfold since Taylor. On this achievement rest all the
economic and social gains of the 20th century. The
productivity of the manual worker has created what we call
“developed” economies. Before Taylor there was no such
thing—all economies were equally “underdeveloped.”
After Taylor, productivity increases resulting from

differences in skills have not existed. There have been
none in respect to productivity other than between hard
workers and lazy ones or between physically strong ones
and weak ones. Productivity increases have been the
result of new tools, of new methods, of new technology.
Taylor’s solution, or what scientific management
achieved, was a shift of production coordination based on
skills to one based on activity where to great extent
muscle was replaced by machines.

The most important contribution of management in the
21st century will be to increase knowledge worker
productivity. In Peter Drucker’s words, in terms of actual
work on knowledge worker productivity we are, in the
year 2000, roughly where we were in the year 1900, a
century ago, in terms of the productivity of the manual
worker. It means that in terms of knowledge work,
production processes are currently coordinated based on
personal opinion. Software projects fail because of lack of
good software professionals. A breakthrough in
knowledge worker productivity will depend on a shift of
coordination away from personal opinion to knowledge
content itself. The throughput of knowledge work is
informational objects that are ideas, mental images or
representations of what may exist in the world about us.
These informational objects are not subject to the law of
physics but an arrangement that can be found to be
inherent in the objects themselves. This should offer
advantages far in excess of those provided by patterns
imposed by any personal opinions. The development of a
universal ordering of ideas must be based on a study of
the notions we believe correspond to the contents of the
real world about us. This inquiry must supply rules
whereby the notions may be placed in positions that must
hold. Personal opinion must, so far as possible, be ruled
out as a reason for placement: the only help must come
from a careful examination of the structure of the ideas
themselves.

This structure will bear directly on evolution and
linguistics. Evolution goes beyond what can be described
in well-defined language and instead enforces a language
that is itself evolving. Certain forms of change and
variability in an evolutionary process can be well
described. And when described, the variability is
represented by constancy, namely by time-independent
describing sentences. It is when we interpret the sentences
that we add the reality, the described variability.
Evolution is a concept that cannot be described in a single
formal language. This means that there is no formal
language permitting description of its own interpretation
process. The pair (description, interpretation) is
productive in the sense that the interpretation process may
be described in a higher language. This suggests the idea
of an evolving language trying to catch up with its own
evolution. The language must first evolve and can then

describe the previous level of its evolution. This productive
process can continue as an interpretation process grow
mature to be descriptive in need of interpretation at the
next level of evolution. This productive evolutionary
process was described in these terms by Bertrand Russell:

That every language has a structure concerning
which in the language, nothing can be said, but
that there may be another language dealing with
the structure of the first language, and having
itself a new structure, and that to this hierarchy of
languages there may be no limit.

In developing software, knowledge is all important, and it
grows all the time through discoveries and decisions we
make. Requirement change is due to this unruled
knowledge growth and largely internally, not externally,
induced. Carefully planned knowledge growth may greatly
reduce the requirement change needed. One such
knowledge-growth strategy that minimizes requirement
volatility is to identify the purpose or the essential
invariant need, called abstraction, that is more objective
than subjective. Once such need is identified, exhausted
and modeled, it is time to search for next-level essential
invariant need. This second-level need realizes the first-
level need through transformation of the first-level need, or
subclass first-level need (e.g., biology is a special kind, or
subclass, of physics), by adding more information. This
process can go on until all needed requirement information
is encapsulated in this hierarchy of requirement model that
is parsimonious, invariant, precise and inclusive. The result
is that we develop a stable requirement model that is
emergent and open ended. Related theories include
hierarchy theory and the methodology of deductive
science. It reaches the goal that none of today’s
methodologies can achieve: complete business and
software alignment based on the law of deduction.

The Emerging Discipline and Technology
An engineering discipline is a consensus among its
practitioners about systematic instructions of how things
should be built. Guided by the discipline, engineers apply
engineering knowledge in the context of scientific
knowledge to solve technical problems. Civil engineering
has a consensus. Consensus in SE has yet to emerge.
Consensus lies in the theory and its coupling with practice.
Consensus in traditional engineering is possible because it
contains well-established scientific knowledge and the
application of it in design is objective. In other words, the
explanations of engineering design and its resulting
components must be objectively determined in terms of
scientific principles outside of personal opinion. The
principles serve as stable underpinnings in which design is
embedded. In SE, the stable underpinnings will be the
business context and the linguistic hierarchy on which

design is based. To develop software is to build
knowledge level by level from the most abstract to the
most concrete as an emergent process. The most abstract
level is the business process model, and the most concrete
level is the code.

The resulting technology, application life-cycle
management (ALM), would potentially substitute all
ALM technologies current in the market. ALM, according
to Forrester, is described as the coordination of
development activities to produce software applications.
Nearly one-third of enterprises already use ALM, and
almost half are aware of it. Forrester defines AML as:

The coordination of development life-cycle activities,
including requirements, modeling, development,
build, and testing, through: 1) enforcement of
processes that span these activities; 2) management
of relationships between development artifacts used
or produced by these activities; and 3) reporting on
progress of the development effort as a whole.

The scope of ALM is described as follows:

• ALM is a discipline, and a product category as
well, and can be accomplished without
supporting tools.

• ALM is not merely a collection of life-cycle
activities, but rather synthesizes them into a
coherent system with an emphasis on interaction
of these activities.

• An ALM solution is the integration, not merely a
collection, of life-cycle tools. Effective tool
support for ALM connects the practitioner tools
within a development project, such as an IDE, a
build-management tool and a test-management
tool. It’s the connections, rather than the tools
themselves, that make up an ALM solution.

ALM, as a newly accepted concept, has gone through
accretion from AML 1.0 to the purposeful design of AML
2.0. AML 1.0 is point-to-point tools integration. These
tools may contain redundant and inconsistent ALM
features. The microprocesses that regulate practitioner
efforts are embedded in each practitioner tool, and the
macroprocesses that regulate interactions between these
practitioners live in the integrations between these tools.
This means that process assets aren’t versionable assets,
can’t share common components and can’t be managed as
a portfolio. For this reason, most shops focus their process
governance efforts on paper-based process assets, hoping
that they correspond to the processes instantiated in their
tool sets.

Forrester defines the architectural ingredients of ALM 2.0
as presented below:

• Practitioner tools assembled out of plug-ins
• Common services available across practitioner

tools
• Repository neutrality
• Use of open integration standards
• Microprocesses and macroprocesses governed by

externalized work flow

There is no solution in the market that possesses all
characteristics of ALM 2.0 as defined by Forrester. A key
issue is the choice between a single-vendor platform to get
the best ALM capabilities and a free pick of practitioner
tools on its own merit but sacrificing on ALM. It has been
accepted that organizations need ALM to have any hope of
tackling the software crisis of poor delivery. An
appropriate ALM strategy is also a sign of maturity within
the organization. But the maturity of the organization is
hard to reach if well-established discipline does not exist in
the industry. The huge diversity in design approaches used
by practitioners currently indicates the immaturity of the
software industry and makes it impossible to create an
industry-wide ALM solution.

If the discipline is at fault, technology appropriation alone
won’t achieve the intended goals of ALM. Can we have an
ALM strategy with ensured successful delivery without
using any ALM tools? That is a test of ALM discipline. If
the answer is no, we have a defective discipline that in turn
leads to a defective AML product. Given the immaturity of
the software industry today, any AML solutions offered in
the market currently are built on defective discipline and
hence are defective solutions. The emerging discipline
based on language hierarchy serves the role of an industry-
wide discipline so that an industry-wide ALM solution
becomes possible. The single discipline of ALM logically
determines the selection of the practitioner’s tools,
integration and the implementation of the ALM 2.0 vision
that addresses concerns in all situations.

Build the Innovation Infrastructure
Emergent industries, based on disruptive technologies and
their associated discontinuous-innovation base, are critical
to the growth of economies. Consequently, ways to
encourage and assist the development and market
penetration of these innovations are of interest to both
policy makers and corporate strategists. Disruptive
technologies and discontinuous innovations could create
entirely new industries or replace the requirements for
success in existing industries (e.g., the electronic watch
replacing the mechanical watch). Theoretical
transformation of SE not only alters the way software is
developed but also transforms business models between
software buyers and producers. Therefore, the resulting
technology is disruptive innovation. It is important to
differentiate between technological and organizational

innovation and between continuous and discontinuous
innovation.

Continuous
Technological
Innovation

Technological innovation along a
particular trajectory of technology
competence development

Discontinuous
Technological
Innovation

Technology competence development is
taken away from the existing trajectory,
and it assumes some form of abrupt
change in the business environment.
Such changes often are a combination
of technological, social, political and
economic factors. The firm has a
feeling of being “out of breath” or
“beyond its comfort zone” in terms of
technology competence.

Continuous
Organizational
Innovation

Organizational change in processes and
structures without changing the identity
of the firm for better efficiency

Discontinuous
Organizational
Innovation

Organizational change in identity,
customer value or boundary for sudden
transition in organizational capacity

In technology-intensive industries such as the IT industry,
competitive advantage is built and renewed through
discontinuous innovation that creates a new family of
products and business and results in a new “product-
technology-market” paradigm that greatly improves the
value offered to customers. Discontinuous innovation
offers greater competitive advantage but might not
improve market penetration and, as a result, requires
greater attention from academics and government.
However, due to their relative novelty, discontinuous
innovations lack the required infrastructure. Infrastructure
is necessary for the development of radical products that
are very different and new. For example, when electrical
lighting was first introduced, it lacked a supporting
infrastructure.

There are upstream and downstream infrastructural
components. Upstream infrastructure is related to
technology development. The growth in technological
knowledge and competence results in a four-stage
progression: 1) basic research, 2) state of industrial
manufacturing, 3) bottlenecks to technological
development and 4) stable new technology. In stage 1,
the scientific base or principles that the innovation is
based on exist, but products and supplies do not. As
knowledge regarding the science and the ability to apply
it grow, it is possible to manufacture prototypes. In stage
2, competing standards and industrial processes exist.
Firms are forced to design and build their own production
equipment. Bottlenecks or constraints that hinder use or
production are encountered and overcome in stage 3.
Once these bottlenecks to production and/or use are

addressed, the innovation becomes a stable new technology
(stage 4).

Downstream infrastructure relates to the demand side, or
“market pull” for the products that develop as a result of
discontinuous innovation. In an emergent market based on
discontinuous innovation, the market passes through four
stages: (1) nonexistent market channels, (2) initial market
acceptance, (3) market augmentation and (4) new markets.
Initially, these markets are faced with nonexistent market
channels (stage 1): not only are there no distribution
channels for new products, but potential customers are not
even aware of the technology’s existence. Firms that enter
the market at this time must realize that they must make an
effort to develop infrastructure, since potential customers
need to be made aware of the technologies, and time and
effort will be required before customers are prepared to
accept the new products. If advocates of the emergent
industry do not focus on raising the awareness and
acceptance of potential customer groups, the eventual
acceptance of products by customers will be delayed,
perhaps indefinitely.

For the IT industry, discontinuous technological innovation
requires discontinuous organizational innovation for the
producers as well as market infrastructure transformation.
A change of software development process means a change
of organizational structure and processes of the producer. It
also changes the behaviors of producers and consumers in
the market because the innovation redefines products and
services and their exchange patterns in the marketplace.
These can be the two biggest barriers for adoption of the
innovation, because current organization’s structure and
market infrastructure lock them in place against change.
Being the largest IT consumer, the federal government is in
a perfect position to lead the innovation adoption by first
utilizing the new discipline. Hence, it is in the
government’s best interests to invest the necessary research
and development and then use the technology it supports.

The United States has been at the center of science and
technology. It has become more challenging to maintain
this leadership. Staying in the forefront of science and
technology meets both long- and short-term national needs.
As the national debt hits a historic record, this innovation
will save tens of billions of dollars in waste in IT spending
and operating costs by the government. “It’s time we once
again put science at the top of our agenda and work to
restore America’s place as the world leader in science and
technology,” President-elect Barack Obama said in a radio
address when he selected four top scientific advisers.
“Whether it’s the science to slow global warming, the
technology to protect our troops and confront bioterror and
weapons of mass destruction, the research to find
lifesaving cures, or the innovations to remake our
industries and create 21st-century jobs—today more than

ever, science holds the key to our survival as a planet and
our security and prosperity as a nation.”

Professor Russell Ackoff said that we are in the early
stage of transformation between two ages: the industrial
age and the systems age. An age is a period of history in
which people are held together by, among other things,
use of a common method of inquiry and a view of the
nature of the world. To say we are experiencing a change
of age is to assert that both our methods of trying to
understand the world and our actual understanding of it
are undergoing fundamental and profound transformation.
The research proposed in this paper serves as catalyst to
the transformation in the software industry. Because we
live in a world where change has always been
accelerating, the competitive edge of modern
organizations lies in their ability to absorb rather than
resist change. Because modern organizations critically
depend on their information systems for daily operations,
information systems are required not only to support
corporate processes but also to be adaptive in response to
evolving business requirements. A transformation in the
software industry will increase the capacity of
information systems by a different magnitude. Because of
the industry-wide innovation and its impacts on other
industries critically dependent on software, success
requires a necessary infrastructure that is beyond the
reach of any single business, let alone a small business.

Conclusion
SE historically emulated the traditional engineering
design approach in the belief that software developers
were in the same position as civil engineers to attack
problems. Civil engineering has a clear consensus on how
things should be built and what standards should be
followed; however, SE is different—it has no such
consensus: everyone promotes his or her own methods.
Furthermore, unlike bridges that are normally on spec and
on budget and do not fall down, software is seldom on
spec or on budget and almost always falls down. This is
due to the difference in underpinnings, physical principles
in traditional engineering but arbitrary human imagination
in SE. Establishing the missing stable underpinnings in
software development holds the potential to transform the
theoretical foundation of SE into one comparable to the
foundation of any branch of conventional engineering.
This disruptive innovation replaces requirements for
success in software industry and is critical for the growth
of economies and creating new businesses and products.
However, industry-wide innovation lacks the desired
infrastructure. Accordingly government support would be
crucial in bringing the unproven technology to market.

	CRITICAL NATIONAL NEED IDEA
	Title
	Save Billions in Software Industry Each Year with Disruptive Innovation
	Keywords

	Save Billions in Software Industry Each Year with Disruptive Innovation
	The History and Present of Software Engineering
	The Fundamental Problem of SE
	The Future of SE

	The Emerging Discipline and Technology
	Build the Innovation Infrastructure
	Conclusion

