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Abstract 
Today’s Software Engineering (SE), like civil engineering before scientific revolution, lies in independent 
craft traditions without applying scientific abstractions. In most human history, science and technology 
remained the largely separate enterprises, intellectually and sociologically. They had been since antiquity. The 
technology of the Industrial Revolution remained in classical independence of the world of science. Only 
during the nineteenth and twentieth centuries did thinkers and toolmakers finally forge a common culture. 
 
Engineering without science is imprecise and uneconomical. The Romans appeared to have had no theory 
regarding of stress, thrusts, and distribution of weight. Roman engineers made no quantitative tests or the 
strength of materials under tension or compression or bending or shearing. They did not realize that the 
strength of a beam depends upon the shape as well as upon the area of its cross section. They built their huge 
aqueducts and bridges solidly with caution and common sense, well within the appropriate factor of safety or 
margin of error. At the same time, however, the Romans were deliberately raising too perilous heights 
apartment houses that frequently collapsed.  
 
After Newton, when physics and mathematics were well established, the application of science has 
transformed civil engineering from experience-based guesswork to systematic scientific discipline.  The design 
of a structure or a mechanical device to carry maximum loads or perform a specific function, for instance, is 
the most precise and economical when scientifically designed while imprecise and wasteful when designed on 
the basis of experience. The discovery and application of science will transform any engineering field from an 
artistic process to a scientific discipline. 
 
Software industry is about half century old and has been pictured with excessive schedule pressure, long 
overtime, constant change and frequent overruns. There has been continuous progress in computer languages, 
integrated development environments, and database management systems etc. But in terms of progress in 
scoping and representing problem space, there has been none. The paper concludes that the software industry 
is at the early stage of transformation and a new scientific discipline of requirements engineering is to emerge. 
The materials that constitute science of SE already exist. The challenge is to integrate them into practical 
disciplines, methods and tools. The infusion of scientific knowledge to software engineering will inevitably 
replace myriad development processes currently seen in the market with a single scientific process and reshape 
and predict requirements definition and management as well as software development technologies.   
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The Problem of Software Engineering 
“Software bugs, or errors, are so prevalent and so 
detrimental that they cost the U.S. economy an estimated 
$59.5 billion annually….Software developers already 
spend approximately 80 percent of development costs on 
identifying and correcting defects, and yet few products 
of any type other than software are shipped with such 
high levels of errors.”1 If errors abound, then rework can 
start to swamp a project. Every instance of reworking 
introduces a sequential set of tasks that must be redone. 
For example, suppose a team completes the sequential 
steps of analyzing, designing, coding and testing a 
feature, and then uncovers a design flaw in testing. Now 
another sequence of redesigning, recoding and retesting is 
required. What is worse, attempts to fix an error often 
introduce new ones. If too many errors are produced, the 
cost and time needed to complete the system become so 
great that going on does not make sense.  

 
Because the effort required to modify what has already 
been created is not in the planned schedule, top managers 
often exaggerate the project in the point of fantasy. 
Fantasy by top management has a devastating effect on 
employees.  If your boss commits you to produce a new 
scheduling system in six months that will actually take at 
least two years, there is no honest way to do your job. 
Such projects appear to be on schedule until the last 
second, then are delayed, and delayed again.  Managers’ 
concern often switches from the project itself to covering 
up the bad publicity of the delays. 
 
The fact of requirements always changing has become 
common assumption and the fatal problem of the software 
industry. Requirements "known" at the beginning of a 
project are inevitably NOT the same requirements 
discovered by the end of the project necessary to be 
ultimately successful. As Brooks noticed, “The hardest 
part of building a software system is deciding precisely 
what to build. No other part of the conceptual work is as 
difficult as establishing the detailed technical 
requirements, including all the interfaces to people, to 
machines, and to other software systems. No other part of 
the work so cripples the resulting system if done wrong. 
No other part is more difficult to rectify later."2 The 

                                                 
1 NIST, Software Errors Cost U.S. Economy $59.5 Billion 
Annually, June 28, 2002. Available at 
Hhttp://www.nist.gov/public_affairs/releases/n02-10.htm 

                                                2 Brooks, Frederick, “No Silver Bullet – Essence and 
Accidents of SE,” Computer, April 1987. 
 

majority of software errors are traced to requirements 
phase and these errors are extremely expensive to repair. 
Reducing requirements errors may be the single most 
effective action developers can take to improve project 
outcomes and assist in the goal of delivering quality 
software, on time and on budget. 
 
Most software projects can be considered at least partial 
failures because few projects meet all their cost, schedule, 
quality, or requirements objectives. A failure is defined as 
any software project with severe cost or schedule 
overruns, quality problems, or that suffers outright 
cancellation. “Of the IT projects that are initiated, from 
5% to 15% will be abandoned before or shortly after 
delivery as hopelessly inadequate. Many others will arrive 
late and over budget or require massive reworking. Few 
IT projects, in other words, truly succeeded. There is cost 
of litigation from irate customers suing suppliers for 
poorly implemented systems.  The yearly tab for all these 
costs conservatively runs somewhere from $60 billion to 
$70 billion in the U.S. alone.”3  
 
If the software industry problem is solved, that is when 
precise and stable requirements are defined priori to 
development, no rework would be necessary. This 
translates to savings of billions of dollars every year for 
federal government alone. Given the magnitude of IT 
spending by the government, it is to the best interests of 
the government to solve this software industry problem 
and cut software development cost by eliminating 
intellectual rework and project failures. Given the huge 
budget deficit facing the nation, the need to solve the 
problem could not be more urgent. On the other hand, as 
market leader and largest IT consumer in the world, 
federal government is in the perfect position to lead the 
innovation and transform the entire industry. 

Why the Problem?  
It is because SE is a young and immature field. As an 
immature field, there is no science only technology. This 
is evidenced by the lack of a single scientific process, low 
project success rate, and error laden software deliverables. 
The fundamental difference between immature and 
mature engineering fields is the relationship between 
science and technology. With a mature engineering field, 
science and technology work in tandem. Science is used 
to explain what the world is and then technology is used 
to implement the world. With an immature engineering 
field, personal opinions are used to explain the world and 

 
3 Charette, Robert N. “Why Software Fails.” IEEE 
Spectrum. Sep. 2005. 
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then technology is used to implement the world. Some 
opinions are better than others. Therefore best practices, 
rather than the application of scientific principles, are the 
norm of immature industries. 

                                               Precise, Concise, and Stable Requirements  3

 
Software engineers/business users specify requirements 
(software functions) based on personal opinions, It is well 
known that users do not know what they want. As 
projects proceeded, users and developers themselves 
could see what the system looked like and came to 
understand the real needs better, a wealth changes would 
be suggested. A change of requirements would result a 
sequence of redesigning, recoding, and retesting.  
 
An engineering field becomes mature only when science 
and technology are fully merged and a single 
methodology based on scientific principle emerges. When 
the scientific principle is applied, personal opinions are 
ruled out for placement and a single scientific 
methodology emerges. Bridges will be built on schedule, 
on budget, on spec and do not fall.  
 
The immaturity of software engineering can also be 
understood in Thomas Kuhn’s philosophy of science.4  
The philosophy of science is a discipline that looks at 
another discipline’s practices to understand and improve 
the latter’s theory and practices. Kuhn’s philosophy works 
well both in describing the current state of SE and in 
providing new ways of approaching its perceived 
problems. All scientific disciplines begin with pre-
paradigm phase that represents the “pre-history” of a 
science, the period in which there is wide disagreement 
among researchers or groups of researchers about 
fundamental issues. While such a state of affairs persists, 
the discipline cannot be said to be truly scientific. A 
discipline becomes scientific when it acquires a scientific 
paradigm, capable of putting an end to the broad 
disagreement characterizing its initial period. At this 
stage, the discipline becomes a science. Within the new 
paradigm, the discipline sets the problems, the terms in 
which these may be approached to give a valid solution 
and the means of identifying what constitutes a valid 
solution. It presents challenging puzzles, supplies clues to 
solutions and guarantees the competent practitioners 
success that those of the prescience schools did not. This 
activity of puzzle-solving within the constraints of the 
paradigm is referred to by Kuhn as normal science.  See 
figure 1. 
 

                                                 

                                                

4 Kuhn, S. Thomas. “The Structure of Scientific 
Revolution,” University of Chicago Press. 1996 
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Software engineering can safely be considered to be in 
crisis within its current paradigm for wide disagreements 
on the list of problems. The theoretical foundation of 
Unified Process no longer meets the demand of today’s 
complex problems. There are several indicators that point 
in that direction, like huge diversity of development 
methodologies etc., and wide disagreement among 
researchers and practitioners about its “scientific 
paradigm” (i.e., its formal theoretical foundations). The 
recognition of current status of software engineering 
being a Kuhnian crisis gives us a clear understanding of 
where software engineering should be heading and what 
should be done about the current crisis, the emergence of 
a new paradigm to put an end to the methodology war. 
The decision to reject one paradigm is always 
simultaneously the decision to accept another, and the 
judgment leading to that decision involves the comparison 
of both paradigms with nature and with each other. The 
transition from a paradigm in crisis to a new one from 
which a new tradition of normal science can emerge is far 
from a cumulative process, one achieved by an 
articulation or extension of the old paradigm. Rather, it is 
a reconstruction of the field from new fundamentals, a 
reconstruction that changes some of the field’s most 
elementary theoretical generalizations as well as many of 
its paradigm methods and applications. When the 
transition is complete, the profession will have changed 
its view of the field, its methods, and its goals.  
 
Kuhn’s view was intended for the nature sciences. Still, 
there are questions about whether Kuhn’s views are 
applicable to the applied sciences and the “the sciences of 
the artificial.” Papdimitriou5 models applied science as 
units of interrelated research and practice, where 
research/practice units are visualized as the nodes in a 

 
5 Papadimitriou, Christos H.: "Database metatheory: 
Asking the big queries" in Proceedings of the fourteenth 
ACM SIGACT-SIGMOD-SIGART symposium on 
Principles of Database Systems, 1995, pp. 1-10. 

Revolution Crisis

Figure 1. Scientific Discipline Revolution Cycle 
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directed graph with the edges indicating connectivity 
between these units. He then claims that the field is in a 
crisis when connectivity is low between the clusters of 
practice and research nodes, i.e., when there is little or no 
connection between practice and theory in an applied 
science. Papdimitriou maps Kuhn’s "crisis" due to 
anomalies in natural sciences to a crisis due to lack of 
connectivity between theory and practice in applied 
sciences. See Figure 2. 
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SE being in Kuhn crisis is further evidenced from the 
applied science perspective that the theory of SE is 
decoupled from its practice.6 Software designers should 
“fake” the theoretical, rational design process in that a 
rational, systematic software design process will always 
be an idealization. Adherence to any methodology was far 
from facilitating the development process, only making 
the design process more problematic. Software engineers 
studied abdicated responsibility for design decisions to 
the methodology in “a fetish of technique,” rather than 
solving the design problem at hand. Methodologies are 
treated primarily as a necessary fiction to present an 
image of control or to provide a symbolic status, and are 
too mechanistic to be of much use in the detailed, day-to-
day organization of a system developer’s activities. 
 
Both literature surveys and empirical evidence suggest a 
decoupling of SE theory and practice, the cause of which 
is not explained in the literature. Without theory there is 

                                                 
6 Simons, C.L., Parmee, I.C., and Coward, P.D., “35 years 
on: to what extent has software engineering design 
achieved its goals?” IEE Proc, -Software. Vol. 150, No. 6, 
Dec. 2003. 
 

no foundation. Without theory, there is no learning. 
Practice without theory is guesswork. The practice of 
scientific work requires the guidance of theory. Resolving 
the decoupling of theory and practice will be a key to the 
success of SE.  

SE Historic Overview 
The term SE was coined in the 1968 NATO Conference 
to introduce software manufacture to the established 
branches of engineering design. It was a deliberately 
provocative term, implying the need for software 
manufacture to be based upon the theoretical foundations 
and practical disciplines that were traditionally used in 
established branches of engineering. It was believed 
during the conference that software designers were in a 
position similar to architects and civil engineers. 
Naturally, we should turn to these ideas to discover how 
to attack the design problem.  
 
Since 1968, the desire to apply the disciplined, systematic 
approach of industry engineering design to software has 
led to the emergence of numerous diverse SE 
methodologies. These methodologies were tightly coupled 
to the software technology at the time.  Between 1968 and 
1989, methodologies were function oriented and systems 
were represented as functions.  After 1989, methodologies 
were object oriented and systems are represented as 
objects.  The industry standard SE model, Unified 
Process, is the result of consolidating more than 50 
object-oriented methods during 1989 to 1994 as 
methodologists faced with a new genre of object-oriented 
programming languages, began to experiment with 
alternative approaches to analysis and design.  There are, 
however, still process wars, perhaps fiercer than before, 
since RUP’s opponents have joined to form the Agile 
movement. For Agile proponents, process is a 
bureaucratic impediment to an otherwise acclaimed 
innovative industry. For RUP proponents, Agile process 
is just another disguise for undisciplined hacking.  
 
Many methodologies such as RUP, XP and Scrum are 
extensions of Unified Process.  UP is a class and all its 
extensions are subclasses.  What this means is that the 
commercial variants take all of the features of UP, 
override some, and add some new ones.  Regardless of 
what features of UP are modified or new features are 
added, UP along its all variants share the same philosophy 
of traditional established branches of engineering.   
 
Four decades after SE was first introduced as a model for 
the field of software development in 1968, issues 
surrounding software production identified four decades 

Practice Theory

Figure 2. Theory and practice decoupling
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ago remain unresolved today (IEE, 2003). The outcome of 
the field of SE does not resemble that of any other 
branches of engineering in terms of success rate and 
quality.  “Bridges are normally built on-time, on-budget, 
and do not fall down. On the other hand, software never 
comes in on-time or on-budget. In addition, it always 
breaks down.” [Chaos 1994]  NATO conference attendees 
were not asserting that software development was actually 
engineering, but rather, they presupposed that it would be 
fruitful to consider software development as engineering 
for whatever benefits that might bring. Although 
considerable benefit was gained from adopting 
fundamental design practices from engineering design, 
the demands on software engineering continue to increase 
beyond the capabilities of current software engineering 
theory and practice. 
 
SE is rooted in the machine paradigm. Making software is 
like making machines. The first step of software design is 
to propose a collection of product features—what the 
system should do—and then map them into the solution 
space. Software, like machines, is functionally 
decomposed into features that are then allocated to the 
resulting components. The functional decomposition also 
becomes anchored in contracts, subcontracts and work-
breakdown structures.  
 
Can SE within the current paradigm evolve into a 
scientific discipline like traditional engineering did? The 
answer is no. The success of traditional engineering, the 
ability to evolve from art to science lies in its 
underpinnings. Specifically, the fundamental 
underpinnings of traditional engineering are embedded in 
physical principles. Engineering activity is how engineers 
decipher problems within the set of constraints imposed 
by the medium in which they are working. The design 
process creates design elements that are explained based 
on the corresponding scientific principles. For the 
machine to be workable, its underpinning—the law of 
nature—must be stable and does not change. Because the 
design parameters of a machine are based on the 
explanations of the law of nature, a change of natural law 
would mean a change of design constraints. An airplane 
would not be workable if gravity continuously changes. 
Stable underpinning implies objective scientific 
knowledge. Design is scientific when the explanation of 
the design elements is based on scientific principles. 
 
With SE, the fundamental underpinning is essentially 
personal opinions embodied in user requirements. User 
requirements are speculated and fed into the development 
cycle and tested in the form of deliverables. As a result, 
software components, unlike particulars found in nature, 

are not constrained by natural laws. The lack of natural 
constraints and physical dimensions in software implies 
that solutions that make tangible material meet our 
expectations do not apply. Software engineers, trained in 
the knowledge of design (e.g., information engineering), 
do not have the scientific knowledge on which design 
relies. Due to the lack of complexity-limiting natural 
constraints, software, if left otherwise unchecked, will 
tend to expand arbitrarily, toward the only constraint 
left—the capacity of our brains. This lack of objectivity 
raises people’s expectations beyond all reason of what can 
and should be achieved within a project’s time and 
resource limitations. Therefore SE, within its current 
paradigm, will not progress to same maturity as that of 
traditional engineering and will remain guesswork rather 
than disciplined inquiry.  

The Challenge 
There have been many studies of software project 
failures. These studies, however, are hardly useful. That 
the problems of SE lie by-and-large in requirements 
engineering is obviously recognized and remedies are 
offered. Still, the end result is the same: there is no 
documented proof or indication that software projects are 
on time, within budget and capable of delivering what is 
expected as far as we know. In other words, the remedies 
do not seem to be working. Projects fail regardless of 
these failure analyses. The challenge is to discover the 
science of SE to replace personal pinions, to formulate the 
theory of creating and applying scientific principles of 
SE, and then to penetrate into practical affairs with new 
methods and tools derived from the new theory.  
 
It is apparent that established engineering branches do not 
have the problem of theory being decoupled from 
practice. To understand why the decoupling problem 
exists in SE but not in traditional engineering, we need to 
look deeper into engineering and machines and tap into 
the mature fundamentals of design common to all 
branches of engineering. Software projects fail because 
they violate these mature fundamentals. Once the mature 
fundamentals are found, the new discipline of SE that 
complies with these fundamentals of engineering design 
can be constructed. This in turn will solve the problem of 
SE theory being decoupled from practice. 
 
The mature fundamentals of machine design were 
elaborated on in a paper written by Polanyi.7 Specifically, 
a machine, as a whole, works under two distinct 

                                                 
7 Polanyi, Michael, “Life’s Irreducible Structure,” 
Science, Vol., 160 
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principles: the higher principle, the machine’s design, and 
the lower principle, the law of inanimate nature on which 
the machine relies. Higher-level properties are emergent 
in the sense that they are not reducible to the lower 
principles. (For example, the shape of a cup is not 
reducible to the laws of physics.) The higher level 
harnesses the lower one, the lower level is the foundation 
and therefore independent of the level above. Hence, a 
machine is a system of dual control that relies, for the 
operations of its higher principle, on the working of the 
lower principle. The higher level relies for its operations 
on the level below and reduces the scope of operation of 
the particulars at the level below by imposing on it a 
boundary that harnesses it to the service of the higher 
level. Because any machine operates under two levels of 
constraints, the design of a machine therefore has to first 
identify the particulars of the lower level and its 
governing laws and then synthesize the higher-level 
constraint, or ways of harnessing lower-level particulars, 
to implement the required functions. See figure 3. 
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The main task of engineers is to apply their scientific 
knowledge, the lower principle of nature laws, to their 
technical knowledge, the higher principle of design, to 
implement required functions and to solve technical 
problems. They then optimize these solutions within the 
requirements and constraints of the project. For example, 
electronic engineers apply the electronic properties of 
engineering solids to the knowledge of circuit design to 
build circuits. Mechanical engineers apply the mechanical 
properties of materials to the mechanical design to build 
machines.  Without a potent knowledge of the material 
mechanics--the lower principle--we build bridges that 
cannot be accounted for. 
 
Because all machines operate under the control of two 
distinct principles, we must precisely represent the lower 
principle objectively and completely and then construct 
the higher principle whereby the lower principle is 
restricted in the new context. Because the lower principle 

describes the natural laws that are stable and do not 
change, the principle of design, being dependent on the 
lower principle, will also be stable and does not change. 
We should never fail any engineering design, whether it is 
a bridge, a vehicle or a airplane, because we can in both 
theory and practice identify particulars and their 
governing laws at the lower level and then construct a 
higher-level principle that harnesses the lower particulars 
precisely to fulfill defined functions. With two levels of 
principles at work, NASA scientists were able to 
successfully place men on the moon.  
 
Engineering design is a process of creating knowledge in 
two levels of abstraction with lower level being scientific 
knowledge and the higher level being technical 
knowledge.  Technical knowledge embodied in the crafts 
is different from knowledge deriving from some abstract 
understanding of a phenomenon. Scientific knowledge is 
the ability to discover what is. It focuses on what already 
exist, and aims at discovering and analyzing this 
existence. Technical knowledge is the ability to create 
things and systems that do not yet exist. It focuses on 
what should be. Without scientific understanding of what 
already exist, our creation would be aimless, imprecise 
and uneconomical. Technical knowledge is about building 
the thing right. Scientific knowledge is about building the 
right thing. Together we build the right thing right. 
Therefore scientific knowledge precedes technical 
knowledge.  

Higher Principle 
(Technical Knowledge) 

Lower Principle 
(Scientific Knowledge) 

Constrain Realize

 
Scientific knowledge is what constitutes the theory, the 
bedrock, upon which technical knowledge is built. 
Consensus of methodology is possible only when 
scientific knowledge is understood and applied in creating 
technical solutions. When scientific knowledge is lacking, 
or the lower principle is based on opinions, consensus of 
methodology is impossible.  

Figure 3.  Mature Fundamentals of Design 

The Current Paradigm of SE 
The high waste resulting from failed projects in the 
software industry, especially those associated with large-
scale systems failures, indicates that the system of beliefs 
that supports thoughts about systems design is grossly 
underdeveloped and underconceptualized. Certain design 
aspects make underconceptualization most rampant and 
therefore grossly undermine the effectiveness of finding 
design solutions. Two are most prominent: setting narrow 
(time and/or business) boundaries and shifting down from 
the whole system down to the level of subsystem and 
focusing on designing around lower-level objectives. 
Underconceptualization leads to misunderstanding of the 
system either hard to detect or expensive to correct. 



        

  UCSoft      
                   White Paper 
 

 

Copyright 2009 UCSoft   www.ucsoft.biz                                               Precise, Concise, and Stable Requirements  7

 It is the underconceptualization of enterprise software 
and the resulting definition of requirements that is the 
major cause of the lack of scientific knowledge in SE. 
The underconceptualized belief system pushes aside the 
lower principle as irrelevant. Therefore it is the belief 
system that is the root cause of the software industry 
problem. These underconceptualized definitions and 
models fail to comply with the mature fundamentals of 
design and are the direct results of the assumptions held 
by the discipline.  
 
In software engineering, “requirements” are typically 
defined as what the system should do, as explained by 
Wikipedia:  “In systems engineering, a requirement can 
be a description of what a system must do, referred to as a 
functional requirement. This type of requirements 
specifies something that the delivered system must be 
able to do. Another type of requirements specifies 
something about the system itself, and how well it 
performs its functions. Such requirements are often called 
nonfunctional requirements, or ‘quality of service 
requirements.’ Examples of such requirements include 
availability, testability, maintainability, and ease of use.”  
 
It is easy to see that the above definitions are the result of 
below three basic assumptions about the users, the 
system, and requirements of the system: 
 
1. Users use, hence are outside of, the system.   
2. Requirements are capabilities of the system needed 

by the users who are the source of requirements. 
3. The system, as specified by the requirements, is made 

of software components only.   
 
Derived from the basic assumptions is the user centric 
paradigm, called use case driven as defined in the Unified 
Process from which many development methodologies 
are derived. This user centric approach focuses 
exclusively on domain-specific solutions that are tightly 
coupled with, often partially understood, or 
misunderstood, domains of businesses. Accordingly, 
software is becoming more customized and 
correspondingly less generic. While some end users may 
be able to request features that closely fit their business 
processes, it’s likely that most of us end up with a poor fit 
between software solution and business needs. Because of 
the narrow coverage of the business by the proposed 
solution and inflexibility of change for each, there seems 
to be the constant need for new applications to 
accommodate changing needs. The end result is massive 
cross-over duplication of development of software that 
tries to implement code as well as business logic. These 
duplicated development efforts create siloed applications 

that can’t work together for tight coupling of software and 
business.  

The Scientific Paradigm of SE 
The two-level knowledge creation is the mature 
fundamentals of design common to all branches of 
engineering. It is also applicable to applied science of 
social systems design. The main difference between 
traditional engineering and social systems engineering is 
the construction of scientific knowledge. Instead of the 
principles of natural laws, the lowest level principle is the 
law of the social system under development. For 
established organizations, there are regularity and order in 
their customers, competencies and processes. These 
regularities are called business rules. We can model them 
precisely with subjective certainty. Once modeled, they 
are stable and precise within the software project life 
cycle.  If there is no regularity and order in the enterprise, 
it indicates that it is not a good time to develop that 
enterprise software system. Requirements do not change 
themselves. The change is our understanding of them and 
the lack of scientific knowledge to model the enterprise.   
 
Enterprise software systems support the mission for 
which they are built. For example, the system should 
provide value to the business that uses it and to its 
customers. It provides products and services to other parts 
of the enterprise: internal customers and/or external 
customers. Therefore, enterprise software systems are 
sub-organizations within organizations. Accordingly, 
enterprise software design is organization design that 
includes the understanding of its customers, 
environmental constraints, products and services the 
customers receive and business processes. It is the 
organization design that supplies the scientific principle 
of enterprise software. The design of organization is well 
understood with established formal methods and 
techniques. The output of the organization design, the 
business model, is the medium against which system 
requirements are derived from objectively.  
 
To bring an end to the current crisis of the software 
industry and to save billions of dollars in intellectual 
rework and failures, the current paradigm must be 
abandoned to allow a new paradigm to emerge. Kuhn 
calls this period the scientific revolution. After the 
revolution, the new paradigm becomes the basis for 
another period of normal science.  The new paradigm will 
change the basic assumptions of software requirements, 
enterprise software, and the software development 
process. Accompanied with the paradigm change is a 
scientific discipline of software requirements engineering. 
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Revolutionary-Disruptive Innovation 
Demands Government Support 
Emergent industries, based on disruptive technologies and 
their associated discontinuous-innovation base, are critical 
to the growth of economies. The emergence of new 
scientific paradigm often creates new products and new 
services not existed before. Consequently, ways to 
encourage and assist the development and market 
penetration of these innovations are of interest to both 
policy makers and corporate strategists. Disruptive 
technologies and discontinuous innovations could create 
entirely new industries or replace the requirements for 
success in existing industries. Theoretical transformation 
of SE not only alters the way software is developed but 
also transforms business models between software buyers 
and producers.  Therefore, the resulting technology is 
disruptive innovation. It is important to differentiate 
between technological and organizational innovation and 
between continuous and discontinuous innovation. 
 
Continuous 
Technological 
Innovation 

Technological innovation along a 
particular trajectory of technology 
competence development  

Discontinuous 
Technological 
Innovation 

Technology competence development is 
taken away from the existing trajectory, 
and it assumes some form of abrupt 
change in the business environment.  
Such changes often are a combination 
of technological, social, political and 
economic factors. The firm has a 
feeling of being “out of breath” or 
“beyond its comfort zone” in terms of 
technology competence. 

Continuous 
Organizational 
Innovation 

Organizational change in processes and 
structures without changing the identity 
of the firm for better efficiency 

Discontinuous 
Organizational 
Innovation 

Organizational change in identity, 
customer value or boundary for sudden 
transition in organizational capacity 

 
In technology-intensive industries such as the IT industry, 
competitive advantage is built and renewed through 
discontinuous innovation that creates a new family of 
products and business and results in a new “product-
technology-market” paradigm that greatly improves the 
value offered to customers. Discontinuous innovation 
offers greater competitive advantage but might not 
improve market penetration and, as a result, requires 
greater attention from academics and government. 
However, due to their relative novelty, discontinuous 
innovations lack the required infrastructure. Infrastructure 
is necessary for the development of radical products that 

are very different and new. For example, when electrical 
lighting was first introduced, it lacked a supporting 
infrastructure. 
 
There are upstream and downstream infrastructural 
components. Upstream infrastructure is related to 
technology development. The growth in technological 
knowledge and competence results in a four-stage 
progression: 1) basic research, 2) state of industrial 
manufacturing, 3) bottlenecks to technological 
development and 4) stable new technology.  In stage 1, 
the scientific base or principles that the innovation is 
based on exist, but products and supplies do not. As 
knowledge regarding the science and the ability to apply 
it grow, it is possible to manufacture prototypes. In stage 
2, competing standards and industrial processes exist. 
Firms are forced to design and build their own production 
equipment. Bottlenecks or constraints that hinder use or 
production are encountered and overcome in stage 3. 
Once these bottlenecks to production and/or use are 
addressed, the innovation becomes a stable new 
technology (stage 4). 
 
Downstream infrastructure relates to the demand side, or 
“market pull” for the products that develop as a result of 
discontinuous innovation. In an emergent market based on 
discontinuous innovation, the market passes through four 
stages: (1) nonexistent market channels, (2) initial market 
acceptance, (3) market augmentation and (4) new 
markets. Initially, these markets are faced with 
nonexistent market channels (stage 1): not only are there 
no distribution channels for new products, but potential 
customers are not even aware of the technology’s 
existence. Firms that enter the market at this time must 
realize that they must make an effort to develop 
infrastructure, since potential customers need to be made 
aware of the technologies, and time and effort will be 
required before customers are prepared to accept the new 
products. If advocates of the emergent industry do not 
focus on raising the awareness and acceptance of potential 
customer groups, the eventual acceptance of products by 
customers will be delayed, perhaps indefinitely. 
 
For the IT industry, discontinuous technological 
innovation requires discontinuous organizational 
innovation for the producers as well as market 
infrastructure transformation. A change of software 
development paradigm requires a change of 
organizational structure and processes of the producer. It 
also changes the behaviors of producers and consumers in 
the market because the innovation redefines products and 
services and their exchange patterns in the marketplace. 
These can be the two biggest barriers for adoption of the 
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innovation, because current organization’s structure and 
market infrastructure lock them in place against change. 
Being the largest IT consumer, the federal government is 
in a perfect position to lead the innovation adoption by 
first utilizing the new discipline. Hence, it is in the 
government’s best interests to invest the necessary 
research and development and then use the technology it 
supports. 
 
The United States has been at the center of science and 
technology. It has become more challenging to maintain 
this leadership. Staying in the forefront of science and 
technology meets both long- and short-term national 
needs. As the national debt hits a historic record, this 
innovation will save tens of billions of dollars of waste in 
IT spending and operating costs by the government. “It’s 
time we once again put science at the top of our agenda 
and work to restore America’s place as the world leader in 
science and technology,” President-elect Barack Obama 
said in a radio address when he selected four top scientific 
advisers. “Whether it’s the science to slow global 
warming, the technology to protect our troops and 
confront bio-terror and weapons of mass destruction, the 
research to find lifesaving cures, or the innovations to 
remake our industries and create 21st-century jobs—today 
more than ever, science holds the key to our survival as a 
planet and our security and prosperity as a nation.” 
 
Professor Russell Ackoff8 said that we are in the early 
stage of transformation between two ages: the industrial 
age and the systems age. An age is a period of history in 
which people are held together by, among other things, 
use of a common method of inquiry and a view of the 
nature of the world. To say we are experiencing a change 
of age is to assert that both our methods of trying to 
understand the world and our actual understanding of it 
are undergoing fundamental and profound transformation. 
The research proposed in this paper serves as catalyst to 
the transformation in the software industry.  Because we 
live in a world where change has always been 
accelerating, the competitive edge of modern 
organizations lies in their ability to absorb rather than 
resist change. Because modern organizations critically 
depend on their information systems for daily operations, 
information systems are required not only to support 
corporate processes but also to be adaptive in response to 
evolving business requirements. A transformation in the 
software industry will increase the capacity of 
information systems by a different magnitude. Because of 
the industry-wide innovation and its impacts on other 

                                                 
8 Ackoff’s Best, Wiley, 1999 

industries critically dependent on software, success 
requires a necessary infrastructure that is beyond the 
reach of any single business, let alone a small business. 
 
Edwards Deming, the father of quality, told American 
businessmen in the 1950’s that you could be better, 
cheaper and faster all the same time. But none listened. 
Deming went to Japan and transformed Japanese’s auto 
industry. If the US government does not catch the 
opportunity and act upon it quickly, the worst is not the 
continuous waste of billions of dollars of IT spending 
every year in intellectual rework and failed software 
projects.  Because there is no country border in science 
and technology, it is not likely that the progress of science 
and technology of SE will be delayed, rather this 
transformation will happen elsewhere in the world.  

Conclusion 
• All man-made systems operate under the constraints 

of two levels of principles. The lower one is the 
principle of nature law and the higher one is the 
principle of design. The lower one constrains the 
higher one on what can be realized. The higher one 
harnesses the lower one to make it serve our purpose.  

• All things are created twice. The first one is to 
describe what to create on paper, the requirements. 
The second is to create what is on paper in real 
world. The two creations involve two different 
knowledge systems. The first one is theoretical 
knowledge deriving from abstract understanding of a 
phenomenon. The second is practical knowledge 
embodied in crafts.  

• Mature engineering’s theoretical knowledge is built 
on scientific principles while immature engineering’s 
theoretical knowledge is built on opinions. 

• Traditional engineering is mature while SE is not. 
• Scientific principle of enterprise software can be 

created and applied. The discipline to create and 
apply scientific principle for the first creation of 
enterprise software is the discipline of requirements 
engineering. 

• The methodology of deductive science, or the 
methodology to create mathematics is the 
methodology to create the scientific discipline of 
software requirements engineering. 

• The disruptive innovation to transform software 
engineering from guesswork to a mature engineering 
discipline has a great economic impact and demands 
government support. 
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