

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz

 Our Changing World of the Software Industry
 From Guesswork to Scientific Work of Requirements Engineering

Jerry Zhu, Ph.D.

UCSoft

(Phone) 703 461 3632
(Fax) 866 201 3281

Jerry.zhu@ucsoft.biz

Abstract
Today’s Software Engineering (SE), like civil engineering before scientific revolution, lies in independent
craft traditions without applying scientific abstractions. In most human history, science and technology
remained the largely separate enterprises, intellectually and sociologically. They had been since antiquity. The
technology of the Industrial Revolution remained in classical independence of the world of science. Only
during the nineteenth and twentieth centuries did thinkers and toolmakers finally forge a common culture.

Engineering without science is imprecise and uneconomical. The Romans appeared to have had no theory
regarding of stress, thrusts, and distribution of weight. Roman engineers made no quantitative tests or the
strength of materials under tension or compression or bending or shearing. They did not realize that the
strength of a beam depends upon the shape as well as upon the area of its cross section. They built their huge
aqueducts and bridges solidly with caution and common sense, well within the appropriate factor of safety or
margin of error. At the same time, however, the Romans were deliberately raising too perilous heights
apartment houses that frequently collapsed.

After Newton, when physics and mathematics were well established, the application of science has
transformed civil engineering from experience-based guesswork to systematic scientific discipline. The design
of a structure or a mechanical device to carry maximum loads or perform a specific function, for instance, is
the most precise and economical when scientifically designed while imprecise and wasteful when designed on
the basis of experience. The discovery and application of science will transform any engineering field from an
artistic process to a scientific discipline.

Software industry is about half century old and has been pictured with excessive schedule pressure, long
overtime, constant change and frequent overruns. There has been continuous progress in computer languages,
integrated development environments, and database management systems etc. But in terms of progress in
scoping and representing problem space, there has been none. The paper concludes that the software industry
is at the early stage of transformation and a new scientific discipline of requirements engineering is to emerge.
The materials that constitute science of SE already exist. The challenge is to integrate them into practical
disciplines, methods and tools. The infusion of scientific knowledge to software engineering will inevitably
replace myriad development processes currently seen in the market with a single scientific process and reshape
and predict requirements definition and management as well as software development technologies.

 Precise, Concise, and Stable Requirements 1

mailto:Jerry.zhu@ucsoft.biz

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 2

The Problem of Software Engineering
“Software bugs, or errors, are so prevalent and so
detrimental that they cost the U.S. economy an estimated
$59.5 billion annually….Software developers already
spend approximately 80 percent of development costs on
identifying and correcting defects, and yet few products
of any type other than software are shipped with such
high levels of errors.”1 If errors abound, then rework can
start to swamp a project. Every instance of reworking
introduces a sequential set of tasks that must be redone.
For example, suppose a team completes the sequential
steps of analyzing, designing, coding and testing a
feature, and then uncovers a design flaw in testing. Now
another sequence of redesigning, recoding and retesting is
required. What is worse, attempts to fix an error often
introduce new ones. If too many errors are produced, the
cost and time needed to complete the system become so
great that going on does not make sense.

Because the effort required to modify what has already
been created is not in the planned schedule, top managers
often exaggerate the project in the point of fantasy.
Fantasy by top management has a devastating effect on
employees. If your boss commits you to produce a new
scheduling system in six months that will actually take at
least two years, there is no honest way to do your job.
Such projects appear to be on schedule until the last
second, then are delayed, and delayed again. Managers’
concern often switches from the project itself to covering
up the bad publicity of the delays.

The fact of requirements always changing has become
common assumption and the fatal problem of the software
industry. Requirements "known" at the beginning of a
project are inevitably NOT the same requirements
discovered by the end of the project necessary to be
ultimately successful. As Brooks noticed, “The hardest
part of building a software system is deciding precisely
what to build. No other part of the conceptual work is as
difficult as establishing the detailed technical
requirements, including all the interfaces to people, to
machines, and to other software systems. No other part of
the work so cripples the resulting system if done wrong.
No other part is more difficult to rectify later."2 The

1 NIST, Software Errors Cost U.S. Economy $59.5 Billion
Annually, June 28, 2002. Available at
Hhttp://www.nist.gov/public_affairs/releases/n02-10.htm

 2 Brooks, Frederick, “No Silver Bullet – Essence and
Accidents of SE,” Computer, April 1987.

majority of software errors are traced to requirements
phase and these errors are extremely expensive to repair.
Reducing requirements errors may be the single most
effective action developers can take to improve project
outcomes and assist in the goal of delivering quality
software, on time and on budget.

Most software projects can be considered at least partial
failures because few projects meet all their cost, schedule,
quality, or requirements objectives. A failure is defined as
any software project with severe cost or schedule
overruns, quality problems, or that suffers outright
cancellation. “Of the IT projects that are initiated, from
5% to 15% will be abandoned before or shortly after
delivery as hopelessly inadequate. Many others will arrive
late and over budget or require massive reworking. Few
IT projects, in other words, truly succeeded. There is cost
of litigation from irate customers suing suppliers for
poorly implemented systems. The yearly tab for all these
costs conservatively runs somewhere from $60 billion to
$70 billion in the U.S. alone.”3

If the software industry problem is solved, that is when
precise and stable requirements are defined priori to
development, no rework would be necessary. This
translates to savings of billions of dollars every year for
federal government alone. Given the magnitude of IT
spending by the government, it is to the best interests of
the government to solve this software industry problem
and cut software development cost by eliminating
intellectual rework and project failures. Given the huge
budget deficit facing the nation, the need to solve the
problem could not be more urgent. On the other hand, as
market leader and largest IT consumer in the world,
federal government is in the perfect position to lead the
innovation and transform the entire industry.

Why the Problem?
It is because SE is a young and immature field. As an
immature field, there is no science only technology. This
is evidenced by the lack of a single scientific process, low
project success rate, and error laden software deliverables.
The fundamental difference between immature and
mature engineering fields is the relationship between
science and technology. With a mature engineering field,
science and technology work in tandem. Science is used
to explain what the world is and then technology is used
to implement the world. With an immature engineering
field, personal opinions are used to explain the world and

3 Charette, Robert N. “Why Software Fails.” IEEE
Spectrum. Sep. 2005.

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz

then technology is used to implement the world. Some
opinions are better than others. Therefore best practices,
rather than the application of scientific principles, are the
norm of immature industries.

 Precise, Concise, and Stable Requirements 3

Software engineers/business users specify requirements
(software functions) based on personal opinions, It is well
known that users do not know what they want. As
projects proceeded, users and developers themselves
could see what the system looked like and came to
understand the real needs better, a wealth changes would
be suggested. A change of requirements would result a
sequence of redesigning, recoding, and retesting.

An engineering field becomes mature only when science
and technology are fully merged and a single
methodology based on scientific principle emerges. When
the scientific principle is applied, personal opinions are
ruled out for placement and a single scientific
methodology emerges. Bridges will be built on schedule,
on budget, on spec and do not fall.

The immaturity of software engineering can also be
understood in Thomas Kuhn’s philosophy of science.4
The philosophy of science is a discipline that looks at
another discipline’s practices to understand and improve
the latter’s theory and practices. Kuhn’s philosophy works
well both in describing the current state of SE and in
providing new ways of approaching its perceived
problems. All scientific disciplines begin with pre-
paradigm phase that represents the “pre-history” of a
science, the period in which there is wide disagreement
among researchers or groups of researchers about
fundamental issues. While such a state of affairs persists,
the discipline cannot be said to be truly scientific. A
discipline becomes scientific when it acquires a scientific
paradigm, capable of putting an end to the broad
disagreement characterizing its initial period. At this
stage, the discipline becomes a science. Within the new
paradigm, the discipline sets the problems, the terms in
which these may be approached to give a valid solution
and the means of identifying what constitutes a valid
solution. It presents challenging puzzles, supplies clues to
solutions and guarantees the competent practitioners
success that those of the prescience schools did not. This
activity of puzzle-solving within the constraints of the
paradigm is referred to by Kuhn as normal science. See
figure 1.

4 Kuhn, S. Thomas. “The Structure of Scientific
Revolution,” University of Chicago Press. 1996

Pre-Paradigmatic
stage

Normal
Science

Software engineering can safely be considered to be in
crisis within its current paradigm for wide disagreements
on the list of problems. The theoretical foundation of
Unified Process no longer meets the demand of today’s
complex problems. There are several indicators that point
in that direction, like huge diversity of development
methodologies etc., and wide disagreement among
researchers and practitioners about its “scientific
paradigm” (i.e., its formal theoretical foundations). The
recognition of current status of software engineering
being a Kuhnian crisis gives us a clear understanding of
where software engineering should be heading and what
should be done about the current crisis, the emergence of
a new paradigm to put an end to the methodology war.
The decision to reject one paradigm is always
simultaneously the decision to accept another, and the
judgment leading to that decision involves the comparison
of both paradigms with nature and with each other. The
transition from a paradigm in crisis to a new one from
which a new tradition of normal science can emerge is far
from a cumulative process, one achieved by an
articulation or extension of the old paradigm. Rather, it is
a reconstruction of the field from new fundamentals, a
reconstruction that changes some of the field’s most
elementary theoretical generalizations as well as many of
its paradigm methods and applications. When the
transition is complete, the profession will have changed
its view of the field, its methods, and its goals.

Kuhn’s view was intended for the nature sciences. Still,
there are questions about whether Kuhn’s views are
applicable to the applied sciences and the “the sciences of
the artificial.” Papdimitriou5 models applied science as
units of interrelated research and practice, where
research/practice units are visualized as the nodes in a

5 Papadimitriou, Christos H.: "Database metatheory:
Asking the big queries" in Proceedings of the fourteenth
ACM SIGACT-SIGMOD-SIGART symposium on
Principles of Database Systems, 1995, pp. 1-10.

Revolution Crisis

Figure 1. Scientific Discipline Revolution Cycle

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz

directed graph with the edges indicating connectivity
between these units. He then claims that the field is in a
crisis when connectivity is low between the clusters of
practice and research nodes, i.e., when there is little or no
connection between practice and theory in an applied
science. Papdimitriou maps Kuhn’s "crisis" due to
anomalies in natural sciences to a crisis due to lack of
connectivity between theory and practice in applied
sciences. See Figure 2.

 Precise, Concise, and Stable Requirements 4

SE being in Kuhn crisis is further evidenced from the
applied science perspective that the theory of SE is
decoupled from its practice.6 Software designers should
“fake” the theoretical, rational design process in that a
rational, systematic software design process will always
be an idealization. Adherence to any methodology was far
from facilitating the development process, only making
the design process more problematic. Software engineers
studied abdicated responsibility for design decisions to
the methodology in “a fetish of technique,” rather than
solving the design problem at hand. Methodologies are
treated primarily as a necessary fiction to present an
image of control or to provide a symbolic status, and are
too mechanistic to be of much use in the detailed, day-to-
day organization of a system developer’s activities.

Both literature surveys and empirical evidence suggest a
decoupling of SE theory and practice, the cause of which
is not explained in the literature. Without theory there is

6 Simons, C.L., Parmee, I.C., and Coward, P.D., “35 years
on: to what extent has software engineering design
achieved its goals?” IEE Proc, -Software. Vol. 150, No. 6,
Dec. 2003.

no foundation. Without theory, there is no learning.
Practice without theory is guesswork. The practice of
scientific work requires the guidance of theory. Resolving
the decoupling of theory and practice will be a key to the
success of SE.

SE Historic Overview
The term SE was coined in the 1968 NATO Conference
to introduce software manufacture to the established
branches of engineering design. It was a deliberately
provocative term, implying the need for software
manufacture to be based upon the theoretical foundations
and practical disciplines that were traditionally used in
established branches of engineering. It was believed
during the conference that software designers were in a
position similar to architects and civil engineers.
Naturally, we should turn to these ideas to discover how
to attack the design problem.

Since 1968, the desire to apply the disciplined, systematic
approach of industry engineering design to software has
led to the emergence of numerous diverse SE
methodologies. These methodologies were tightly coupled
to the software technology at the time. Between 1968 and
1989, methodologies were function oriented and systems
were represented as functions. After 1989, methodologies
were object oriented and systems are represented as
objects. The industry standard SE model, Unified
Process, is the result of consolidating more than 50
object-oriented methods during 1989 to 1994 as
methodologists faced with a new genre of object-oriented
programming languages, began to experiment with
alternative approaches to analysis and design. There are,
however, still process wars, perhaps fiercer than before,
since RUP’s opponents have joined to form the Agile
movement. For Agile proponents, process is a
bureaucratic impediment to an otherwise acclaimed
innovative industry. For RUP proponents, Agile process
is just another disguise for undisciplined hacking.

Many methodologies such as RUP, XP and Scrum are
extensions of Unified Process. UP is a class and all its
extensions are subclasses. What this means is that the
commercial variants take all of the features of UP,
override some, and add some new ones. Regardless of
what features of UP are modified or new features are
added, UP along its all variants share the same philosophy
of traditional established branches of engineering.

Four decades after SE was first introduced as a model for
the field of software development in 1968, issues
surrounding software production identified four decades

Practice Theory

Figure 2. Theory and practice decoupling

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 5

ago remain unresolved today (IEE, 2003). The outcome of
the field of SE does not resemble that of any other
branches of engineering in terms of success rate and
quality. “Bridges are normally built on-time, on-budget,
and do not fall down. On the other hand, software never
comes in on-time or on-budget. In addition, it always
breaks down.” [Chaos 1994] NATO conference attendees
were not asserting that software development was actually
engineering, but rather, they presupposed that it would be
fruitful to consider software development as engineering
for whatever benefits that might bring. Although
considerable benefit was gained from adopting
fundamental design practices from engineering design,
the demands on software engineering continue to increase
beyond the capabilities of current software engineering
theory and practice.

SE is rooted in the machine paradigm. Making software is
like making machines. The first step of software design is
to propose a collection of product features—what the
system should do—and then map them into the solution
space. Software, like machines, is functionally
decomposed into features that are then allocated to the
resulting components. The functional decomposition also
becomes anchored in contracts, subcontracts and work-
breakdown structures.

Can SE within the current paradigm evolve into a
scientific discipline like traditional engineering did? The
answer is no. The success of traditional engineering, the
ability to evolve from art to science lies in its
underpinnings. Specifically, the fundamental
underpinnings of traditional engineering are embedded in
physical principles. Engineering activity is how engineers
decipher problems within the set of constraints imposed
by the medium in which they are working. The design
process creates design elements that are explained based
on the corresponding scientific principles. For the
machine to be workable, its underpinning—the law of
nature—must be stable and does not change. Because the
design parameters of a machine are based on the
explanations of the law of nature, a change of natural law
would mean a change of design constraints. An airplane
would not be workable if gravity continuously changes.
Stable underpinning implies objective scientific
knowledge. Design is scientific when the explanation of
the design elements is based on scientific principles.

With SE, the fundamental underpinning is essentially
personal opinions embodied in user requirements. User
requirements are speculated and fed into the development
cycle and tested in the form of deliverables. As a result,
software components, unlike particulars found in nature,

are not constrained by natural laws. The lack of natural
constraints and physical dimensions in software implies
that solutions that make tangible material meet our
expectations do not apply. Software engineers, trained in
the knowledge of design (e.g., information engineering),
do not have the scientific knowledge on which design
relies. Due to the lack of complexity-limiting natural
constraints, software, if left otherwise unchecked, will
tend to expand arbitrarily, toward the only constraint
left—the capacity of our brains. This lack of objectivity
raises people’s expectations beyond all reason of what can
and should be achieved within a project’s time and
resource limitations. Therefore SE, within its current
paradigm, will not progress to same maturity as that of
traditional engineering and will remain guesswork rather
than disciplined inquiry.

The Challenge
There have been many studies of software project
failures. These studies, however, are hardly useful. That
the problems of SE lie by-and-large in requirements
engineering is obviously recognized and remedies are
offered. Still, the end result is the same: there is no
documented proof or indication that software projects are
on time, within budget and capable of delivering what is
expected as far as we know. In other words, the remedies
do not seem to be working. Projects fail regardless of
these failure analyses. The challenge is to discover the
science of SE to replace personal pinions, to formulate the
theory of creating and applying scientific principles of
SE, and then to penetrate into practical affairs with new
methods and tools derived from the new theory.

It is apparent that established engineering branches do not
have the problem of theory being decoupled from
practice. To understand why the decoupling problem
exists in SE but not in traditional engineering, we need to
look deeper into engineering and machines and tap into
the mature fundamentals of design common to all
branches of engineering. Software projects fail because
they violate these mature fundamentals. Once the mature
fundamentals are found, the new discipline of SE that
complies with these fundamentals of engineering design
can be constructed. This in turn will solve the problem of
SE theory being decoupled from practice.

The mature fundamentals of machine design were
elaborated on in a paper written by Polanyi.7 Specifically,
a machine, as a whole, works under two distinct

7 Polanyi, Michael, “Life’s Irreducible Structure,”
Science, Vol., 160

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz

principles: the higher principle, the machine’s design, and
the lower principle, the law of inanimate nature on which
the machine relies. Higher-level properties are emergent
in the sense that they are not reducible to the lower
principles. (For example, the shape of a cup is not
reducible to the laws of physics.) The higher level
harnesses the lower one, the lower level is the foundation
and therefore independent of the level above. Hence, a
machine is a system of dual control that relies, for the
operations of its higher principle, on the working of the
lower principle. The higher level relies for its operations
on the level below and reduces the scope of operation of
the particulars at the level below by imposing on it a
boundary that harnesses it to the service of the higher
level. Because any machine operates under two levels of
constraints, the design of a machine therefore has to first
identify the particulars of the lower level and its
governing laws and then synthesize the higher-level
constraint, or ways of harnessing lower-level particulars,
to implement the required functions. See figure 3.

 Precise, Concise, and Stable Requirements 6

The main task of engineers is to apply their scientific
knowledge, the lower principle of nature laws, to their
technical knowledge, the higher principle of design, to
implement required functions and to solve technical
problems. They then optimize these solutions within the
requirements and constraints of the project. For example,
electronic engineers apply the electronic properties of
engineering solids to the knowledge of circuit design to
build circuits. Mechanical engineers apply the mechanical
properties of materials to the mechanical design to build
machines. Without a potent knowledge of the material
mechanics--the lower principle--we build bridges that
cannot be accounted for.

Because all machines operate under the control of two
distinct principles, we must precisely represent the lower
principle objectively and completely and then construct
the higher principle whereby the lower principle is
restricted in the new context. Because the lower principle

describes the natural laws that are stable and do not
change, the principle of design, being dependent on the
lower principle, will also be stable and does not change.
We should never fail any engineering design, whether it is
a bridge, a vehicle or a airplane, because we can in both
theory and practice identify particulars and their
governing laws at the lower level and then construct a
higher-level principle that harnesses the lower particulars
precisely to fulfill defined functions. With two levels of
principles at work, NASA scientists were able to
successfully place men on the moon.

Engineering design is a process of creating knowledge in
two levels of abstraction with lower level being scientific
knowledge and the higher level being technical
knowledge. Technical knowledge embodied in the crafts
is different from knowledge deriving from some abstract
understanding of a phenomenon. Scientific knowledge is
the ability to discover what is. It focuses on what already
exist, and aims at discovering and analyzing this
existence. Technical knowledge is the ability to create
things and systems that do not yet exist. It focuses on
what should be. Without scientific understanding of what
already exist, our creation would be aimless, imprecise
and uneconomical. Technical knowledge is about building
the thing right. Scientific knowledge is about building the
right thing. Together we build the right thing right.
Therefore scientific knowledge precedes technical
knowledge.

Higher Principle
(Technical Knowledge)

Lower Principle
(Scientific Knowledge)

Constrain Realize

Scientific knowledge is what constitutes the theory, the
bedrock, upon which technical knowledge is built.
Consensus of methodology is possible only when
scientific knowledge is understood and applied in creating
technical solutions. When scientific knowledge is lacking,
or the lower principle is based on opinions, consensus of
methodology is impossible.

Figure 3. Mature Fundamentals of Design

The Current Paradigm of SE
The high waste resulting from failed projects in the
software industry, especially those associated with large-
scale systems failures, indicates that the system of beliefs
that supports thoughts about systems design is grossly
underdeveloped and underconceptualized. Certain design
aspects make underconceptualization most rampant and
therefore grossly undermine the effectiveness of finding
design solutions. Two are most prominent: setting narrow
(time and/or business) boundaries and shifting down from
the whole system down to the level of subsystem and
focusing on designing around lower-level objectives.
Underconceptualization leads to misunderstanding of the
system either hard to detect or expensive to correct.

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 7

 It is the underconceptualization of enterprise software
and the resulting definition of requirements that is the
major cause of the lack of scientific knowledge in SE.
The underconceptualized belief system pushes aside the
lower principle as irrelevant. Therefore it is the belief
system that is the root cause of the software industry
problem. These underconceptualized definitions and
models fail to comply with the mature fundamentals of
design and are the direct results of the assumptions held
by the discipline.

In software engineering, “requirements” are typically
defined as what the system should do, as explained by
Wikipedia: “In systems engineering, a requirement can
be a description of what a system must do, referred to as a
functional requirement. This type of requirements
specifies something that the delivered system must be
able to do. Another type of requirements specifies
something about the system itself, and how well it
performs its functions. Such requirements are often called
nonfunctional requirements, or ‘quality of service
requirements.’ Examples of such requirements include
availability, testability, maintainability, and ease of use.”

It is easy to see that the above definitions are the result of
below three basic assumptions about the users, the
system, and requirements of the system:

1. Users use, hence are outside of, the system.
2. Requirements are capabilities of the system needed

by the users who are the source of requirements.
3. The system, as specified by the requirements, is made

of software components only.

Derived from the basic assumptions is the user centric
paradigm, called use case driven as defined in the Unified
Process from which many development methodologies
are derived. This user centric approach focuses
exclusively on domain-specific solutions that are tightly
coupled with, often partially understood, or
misunderstood, domains of businesses. Accordingly,
software is becoming more customized and
correspondingly less generic. While some end users may
be able to request features that closely fit their business
processes, it’s likely that most of us end up with a poor fit
between software solution and business needs. Because of
the narrow coverage of the business by the proposed
solution and inflexibility of change for each, there seems
to be the constant need for new applications to
accommodate changing needs. The end result is massive
cross-over duplication of development of software that
tries to implement code as well as business logic. These
duplicated development efforts create siloed applications

that can’t work together for tight coupling of software and
business.

The Scientific Paradigm of SE
The two-level knowledge creation is the mature
fundamentals of design common to all branches of
engineering. It is also applicable to applied science of
social systems design. The main difference between
traditional engineering and social systems engineering is
the construction of scientific knowledge. Instead of the
principles of natural laws, the lowest level principle is the
law of the social system under development. For
established organizations, there are regularity and order in
their customers, competencies and processes. These
regularities are called business rules. We can model them
precisely with subjective certainty. Once modeled, they
are stable and precise within the software project life
cycle. If there is no regularity and order in the enterprise,
it indicates that it is not a good time to develop that
enterprise software system. Requirements do not change
themselves. The change is our understanding of them and
the lack of scientific knowledge to model the enterprise.

Enterprise software systems support the mission for
which they are built. For example, the system should
provide value to the business that uses it and to its
customers. It provides products and services to other parts
of the enterprise: internal customers and/or external
customers. Therefore, enterprise software systems are
sub-organizations within organizations. Accordingly,
enterprise software design is organization design that
includes the understanding of its customers,
environmental constraints, products and services the
customers receive and business processes. It is the
organization design that supplies the scientific principle
of enterprise software. The design of organization is well
understood with established formal methods and
techniques. The output of the organization design, the
business model, is the medium against which system
requirements are derived from objectively.

To bring an end to the current crisis of the software
industry and to save billions of dollars in intellectual
rework and failures, the current paradigm must be
abandoned to allow a new paradigm to emerge. Kuhn
calls this period the scientific revolution. After the
revolution, the new paradigm becomes the basis for
another period of normal science. The new paradigm will
change the basic assumptions of software requirements,
enterprise software, and the software development
process. Accompanied with the paradigm change is a
scientific discipline of software requirements engineering.

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 8

Revolutionary-Disruptive Innovation
Demands Government Support
Emergent industries, based on disruptive technologies and
their associated discontinuous-innovation base, are critical
to the growth of economies. The emergence of new
scientific paradigm often creates new products and new
services not existed before. Consequently, ways to
encourage and assist the development and market
penetration of these innovations are of interest to both
policy makers and corporate strategists. Disruptive
technologies and discontinuous innovations could create
entirely new industries or replace the requirements for
success in existing industries. Theoretical transformation
of SE not only alters the way software is developed but
also transforms business models between software buyers
and producers. Therefore, the resulting technology is
disruptive innovation. It is important to differentiate
between technological and organizational innovation and
between continuous and discontinuous innovation.

Continuous
Technological
Innovation

Technological innovation along a
particular trajectory of technology
competence development

Discontinuous
Technological
Innovation

Technology competence development is
taken away from the existing trajectory,
and it assumes some form of abrupt
change in the business environment.
Such changes often are a combination
of technological, social, political and
economic factors. The firm has a
feeling of being “out of breath” or
“beyond its comfort zone” in terms of
technology competence.

Continuous
Organizational
Innovation

Organizational change in processes and
structures without changing the identity
of the firm for better efficiency

Discontinuous
Organizational
Innovation

Organizational change in identity,
customer value or boundary for sudden
transition in organizational capacity

In technology-intensive industries such as the IT industry,
competitive advantage is built and renewed through
discontinuous innovation that creates a new family of
products and business and results in a new “product-
technology-market” paradigm that greatly improves the
value offered to customers. Discontinuous innovation
offers greater competitive advantage but might not
improve market penetration and, as a result, requires
greater attention from academics and government.
However, due to their relative novelty, discontinuous
innovations lack the required infrastructure. Infrastructure
is necessary for the development of radical products that

are very different and new. For example, when electrical
lighting was first introduced, it lacked a supporting
infrastructure.

There are upstream and downstream infrastructural
components. Upstream infrastructure is related to
technology development. The growth in technological
knowledge and competence results in a four-stage
progression: 1) basic research, 2) state of industrial
manufacturing, 3) bottlenecks to technological
development and 4) stable new technology. In stage 1,
the scientific base or principles that the innovation is
based on exist, but products and supplies do not. As
knowledge regarding the science and the ability to apply
it grow, it is possible to manufacture prototypes. In stage
2, competing standards and industrial processes exist.
Firms are forced to design and build their own production
equipment. Bottlenecks or constraints that hinder use or
production are encountered and overcome in stage 3.
Once these bottlenecks to production and/or use are
addressed, the innovation becomes a stable new
technology (stage 4).

Downstream infrastructure relates to the demand side, or
“market pull” for the products that develop as a result of
discontinuous innovation. In an emergent market based on
discontinuous innovation, the market passes through four
stages: (1) nonexistent market channels, (2) initial market
acceptance, (3) market augmentation and (4) new
markets. Initially, these markets are faced with
nonexistent market channels (stage 1): not only are there
no distribution channels for new products, but potential
customers are not even aware of the technology’s
existence. Firms that enter the market at this time must
realize that they must make an effort to develop
infrastructure, since potential customers need to be made
aware of the technologies, and time and effort will be
required before customers are prepared to accept the new
products. If advocates of the emergent industry do not
focus on raising the awareness and acceptance of potential
customer groups, the eventual acceptance of products by
customers will be delayed, perhaps indefinitely.

For the IT industry, discontinuous technological
innovation requires discontinuous organizational
innovation for the producers as well as market
infrastructure transformation. A change of software
development paradigm requires a change of
organizational structure and processes of the producer. It
also changes the behaviors of producers and consumers in
the market because the innovation redefines products and
services and their exchange patterns in the marketplace.
These can be the two biggest barriers for adoption of the

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 9

innovation, because current organization’s structure and
market infrastructure lock them in place against change.
Being the largest IT consumer, the federal government is
in a perfect position to lead the innovation adoption by
first utilizing the new discipline. Hence, it is in the
government’s best interests to invest the necessary
research and development and then use the technology it
supports.

The United States has been at the center of science and
technology. It has become more challenging to maintain
this leadership. Staying in the forefront of science and
technology meets both long- and short-term national
needs. As the national debt hits a historic record, this
innovation will save tens of billions of dollars of waste in
IT spending and operating costs by the government. “It’s
time we once again put science at the top of our agenda
and work to restore America’s place as the world leader in
science and technology,” President-elect Barack Obama
said in a radio address when he selected four top scientific
advisers. “Whether it’s the science to slow global
warming, the technology to protect our troops and
confront bio-terror and weapons of mass destruction, the
research to find lifesaving cures, or the innovations to
remake our industries and create 21st-century jobs—today
more than ever, science holds the key to our survival as a
planet and our security and prosperity as a nation.”

Professor Russell Ackoff8 said that we are in the early
stage of transformation between two ages: the industrial
age and the systems age. An age is a period of history in
which people are held together by, among other things,
use of a common method of inquiry and a view of the
nature of the world. To say we are experiencing a change
of age is to assert that both our methods of trying to
understand the world and our actual understanding of it
are undergoing fundamental and profound transformation.
The research proposed in this paper serves as catalyst to
the transformation in the software industry. Because we
live in a world where change has always been
accelerating, the competitive edge of modern
organizations lies in their ability to absorb rather than
resist change. Because modern organizations critically
depend on their information systems for daily operations,
information systems are required not only to support
corporate processes but also to be adaptive in response to
evolving business requirements. A transformation in the
software industry will increase the capacity of
information systems by a different magnitude. Because of
the industry-wide innovation and its impacts on other

8 Ackoff’s Best, Wiley, 1999

industries critically dependent on software, success
requires a necessary infrastructure that is beyond the
reach of any single business, let alone a small business.

Edwards Deming, the father of quality, told American
businessmen in the 1950’s that you could be better,
cheaper and faster all the same time. But none listened.
Deming went to Japan and transformed Japanese’s auto
industry. If the US government does not catch the
opportunity and act upon it quickly, the worst is not the
continuous waste of billions of dollars of IT spending
every year in intellectual rework and failed software
projects. Because there is no country border in science
and technology, it is not likely that the progress of science
and technology of SE will be delayed, rather this
transformation will happen elsewhere in the world.

Conclusion
• All man-made systems operate under the constraints

of two levels of principles. The lower one is the
principle of nature law and the higher one is the
principle of design. The lower one constrains the
higher one on what can be realized. The higher one
harnesses the lower one to make it serve our purpose.

• All things are created twice. The first one is to
describe what to create on paper, the requirements.
The second is to create what is on paper in real
world. The two creations involve two different
knowledge systems. The first one is theoretical
knowledge deriving from abstract understanding of a
phenomenon. The second is practical knowledge
embodied in crafts.

• Mature engineering’s theoretical knowledge is built
on scientific principles while immature engineering’s
theoretical knowledge is built on opinions.

• Traditional engineering is mature while SE is not.
• Scientific principle of enterprise software can be

created and applied. The discipline to create and
apply scientific principle for the first creation of
enterprise software is the discipline of requirements
engineering.

• The methodology of deductive science, or the
methodology to create mathematics is the
methodology to create the scientific discipline of
software requirements engineering.

• The disruptive innovation to transform software
engineering from guesswork to a mature engineering
discipline has a great economic impact and demands
government support.

	Abstract
	The Problem of Software Engineering
	Why the Problem?
	SE Historic Overview
	The Challenge
	The Current Paradigm of SE
	The Scientific Paradigm of SE
	Revolutionary-Disruptive Innovation Demands Government Support
	Conclusion

