A Structural Health Monitoring Company

Smarter Structures, Safer World!
Advanced Health Management of Civil Infrastructure Using a Scalable Active Sensing System
1. Project Overview
2. Project Accomplishments
3. Ongoing Development and Application
4. Demonstration
NIST-TIP Project Overview
Design of SCANSn System

Information flow

- **SCANSn Node**
 - SHM Hardware - Local
 - Data processing algorithm - Local
 - Integrated Wireless Communication - Local

- **SCANSn Router**

- **SCANSn Master**
 - High Speed Computer & Server - Remote
 - Global Monitoring Algorithm - Global
 - New Communication protocol - w/Satellite

- **Server Room**
 - Dedicated for each Bridge Structure

- **Satellite**

- **Unknown beyond Acellent’s Scope**

Company Proprietary Information
Targeted Applications

- Gusset Plates of Truss Bridges
 - Images of gusset plates
- Pipelines
 - Images of pipelines
Accomplishments of NIST Program
Developments Under NIST TIP

1. Hardware development
2. Global System Management
3. Local Damage Detection and Display
4. System Testing and Validation
• The size of the current data acquisition system: 24x8x30 cm³ (9 lbs) for the main box and 19x12x5 cm³ (1.5 lbs) for the Switch Amplifier (SA) box + a laptop to operate the system and the data post-processing.
• The size of the final SCANSn node system: 10x8x26 cm³ (~4 lbs) (The SA box will be integrated into the main box)
Damage Location and Display

- Developed 3D rendering from the 2D image for any arbitrary shape geometry
- Incorporated into the local damage detection software (Smart Patch), which is linked into the global health management software
- Mapped on 3D geometry of the structure of interest
Global Interface

- Interface for managing the system on a global level
System Validation

• Bridge model with the Scansn
Application of SCANS^n
Pipeline Corrosion Jeopardizes Safety of Refineries and Pipelines

Leakage happens due to wall thickness loss, leading to Catastrophic event.

Real-time active pipeline integrity detection system for early alarm to prevent the loss by catastrophic event.

24/7 On-line Monitoring for early alarm to prevent the loss by catastrophic event.
On-Going and Past Commercialization Efforts

1. **State DOTs:** Discussions with state DOTs: Michigan DOT, South Carolina DOT to install and test the system on a steel bridge.

2. **Conferences:** Poster at EWSHM (European Workshop on Structural Health Monitoring), 2010. Upcoming conferences are SPIE 2013 and IWSHM 2013.

3. **Government Proposals:** Teaming-up request from University of Colorado Denver for a BAA from FHWA.

4. **Industries:** Application of the system in the energy, aerospace, civil infrastructure, marine etc industries.

5. **Patents:** Conceptual Design of SCANSn for Health Management of Civil infrastructure inventory.

6. **Publications:** Several Conference and Journal papers.
• SPIE Conference, March 2011

“On suitability of feature extraction techniques for local damage detection for SCANS”, S. K. Yadav, T. Kundu, S. Banerjee, and S. Beard

“On Energy harvesting modules in SCANSn system for Bridge Health Monitoring”, Y. Justin, D. S. Ha, D. Zhang, and S. Banerjee

“Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry”, S. K. Yadav, S. Banerjee, and T. Kundu

• IWSHM Conference, Sept 2011

“Advanced health management of civil infrastructures using SCANSn system”, S. Banerjee, H. Chung, D. Zhang, S. Beard, F.-K Chang, I. Li

“Effective damage sensitive feature extraction methods for crack detection using flaw scattered ultrasonic wave field signal”, S. K. Yadav, S. Banerjee, and T. Kundu
Demonstration

Demonstration of global access and damage detection capabilities of SCANSn/RAPID