Workshop on Future Large CO2 Compression Systems

> Gaithersburg, MD March 30, 2009

Sponsored by EPRI / DOE / NIST

Large CO2 Sources & Capture Systems

Gas Processing Solutions LLC

Dan Kubek

Dan.Kubek@Yahoo.com

Workshop on Future Large CO2 Compression Systems Large CO2 Source & Capture Systems Agenda

- CO2 Pipelines in USA for EOR
- 3 Large CO2 Source/Capture/Compression Plants
 - ExxonMobil LaBarge-Shute Creek, WY *Natural Gas* Plant
 - CDT Inc / Lubbock, TX CO2-from-*CFPP-Flue Gas*
 - Coffeyville Resources (KS) <u>Gasification</u>-based **Fertilizer Plant**

CO2 Pipelines in USA for EOR (Enhanced Oil Recovery)

Major CO2 Pipelines in USA for EOR Source: Melzer Consulting / 6th Annual Conference CC&S Conf-Pittsburgh / 10May2007

PIPELINE	Owner/Operator	Length (mi)	Length (km)	Diameter - in	Estimated Max Flow Capacity (mmcfpd)	Estimated Max Flow Capacity (million tons/yr	Location	PL Type
Adair	Apache	15	24	4	47	1.0	TX	п
Anadarko Powder River Basin CO2 PL	Anadarko	125	201	16	204	4.3	WY	п
Anton Irish	Oxy	40	64	8	77	1.6	TX	п
Bravo	Oxy Permian	218	351	20	331	7.0	NM.TX	п
Canyon Reef Carriers	Kinder Morgan	139	224	16	204	4.3	TX	п
Centerline	Kinder Morgan	113	182	16	204	4.3	TX	п
Central Basin	Kinder Morgan	143	230	16	204	4.3	TX	п
Chaparral	Chaparral Energy	23	37	6	60	13	OK	п
Choctaw	Denbury Resources	183	294	20	331	7.0	MSLA	п
Comanche Creek (2007 reactivated)	PetroSource	100	161	6	60	13	TX	п
Cordona Lake	XTO	7	11	6	60	13	TX	п
Cortez	Kinder Morgan	502	808	30	1117	23.6	TX	п
Dollarhide	Chevron	23	37	8	77	1.6	TX	п
El Mar	Kinder Morgan	35	56	6	60	13	TX	п
Enid-Purdy (Central Oklahoma)	Anadarko	117	188	8	77	1.6	OK	п
Este I - to Welch, Tx	ExconMobil, et al	40	64	14	160	3.4	TX	п
Este II - to Salt Crk Field	ExxonMobil	45	72	12	125	2.6	TX	п
Ford	Kinder Morgan	12	19	4	47	1.0	TX	п
Joffre Viking	Penn West Petroleum Ltd.	8	13	6	60	13	Alberta	п
Llano	Trinity CO2	53	85	12-8	77	1.6	NM	п
Pecos County	Kinder Morgan	26	42	8	77	1.6	TX	п
Raven Ridge	Chevron	160	257	16	204	43	WY/Co	п
Sheep Mtn	British Petroleum	408	656	24	538	11.4	TX	п
Shute Creek	ExxonMobil	30	48	30	1117	23.6	WY	п
Slauphter	Oxy Permian	35	56	12	125	2.6	TX	п
Transpetco	TransPetco	110	177	8	77	1.6	TX OK	п
W Texas	Trinity CO2	60	97	12-8	77	16	TX.NM	п
Wellman	PetroSource	25	40	6	60	1.3	TX	п
White Frost	Core Energy, LLC	11	18	6	60	13	ML	п
Wyoming CO2	ExxonMobil	112	180	20-16	204	4.3	WY	п
Dakota Gasification (Souris Valley)	Dakota Gasification	204	328	16	204	4.3	ND/Sask	III
Pikes Peak	PetroSource	40	64	8	77	1.6	TX	ш
Val Verde	PetroSource	83	134	10	98	21	TX	ш

* Tabulation does not include many shorter high pressure trunk lines to indiividual fields

600 MW- IGCC @ 90% CO2 Capture = 4.3 MM T/Y CO2

Gas Processing Solutions LLC

CO2 Pipelines in USA for EOR Source: Polytec (Norway) / 08January2008 **State-of-Art Overview / CO2 Pipeline Transport**

	Canyon	Central	Sheep	Bravo	Cortez	Weyburn	Jackson
	Reef	Basin	Mountain	Dome	Pipeline	(11)	Dome,
	Carriers (4)	Pipeline (5)	(6) (7; 8)	Source (9)	(10)		NEJD
CO2	85-98	98.5	96.8-97.4	99.7	95	96	98.7- 99.4
CH4	2-15 C6H14	0.2	1.7		1-5	0.7	Trace
N ₂	<0.5	1.3	0.6-0.9	0.3	4	<300 ppm	Trace
H ₂ S	<200 ppm	< 20 ppm (spec)			0.002	0.9	Trace
C2+		-	0.3-0.6	-	Trace	2.3	-
CO	-	-	-			0.1	-
O ₂	-	<10 ppm wt (spec)		-		<50 ppm wt	-
NOx	-	-	-	-	-		-
SOx	-	-	-	-	2		1
H ₂	-	-	-	-	-	Trace?	-
Ar	-	-	-	-	-		-
H ₂ O	50 ppm wt	257 ppm wt	129 ppm wt	•	257 ppm wt	20 ppm vol	

Workshop on Future Large CO2 Compression Systems Large CO2 Source & Capture Systems Agenda

- CO2 Pipelines in USA for EOR
- 3 Large CO2 Source/Capture/Compression Plants
 - ExxonMobil LaBarge-Shute Creek, WY *Natural Gas* Plant
 - CDT Inc / Lubbock, TX CO2-from-*CFPP-Flue Gas*
 - Coffeyville Resources (KS) <u>Gasification</u>-based **Fertilizer Plant**

ExxonMobil Shute Creek NG Plant CO2 Capture & Compression for EOR Shute Creek, WY NG Treating Facility

ExxonMobil -- Shute Creek, WY Gas Treating Facility Source: EXOM – Midland CO2 Conference / 2005

Gas Processing Solutions LLC

ExxonMobil Shute Creek Natural Gas (NG) Plant **CO2 Capture & Compression for EOR Gas Processing Overview**

- LaBarge NG Field & Shute Creek Gas Treating Facility
- Commissioned in 1986 in SW-Wyoming
 - Initial Capacity of 480 MMSCFD of NG
 - Expanded in 2005 to 700 MMSCFD
- NG Feed: 5%V H2S 66%V CO2 21%V CH4 0.6%V He 7%V N2
- Marketable Products: CH4, CO2, He, & Sulfur
- Selexol Process (2-trains) used for Acid Gas Removal:
 - H2S-Rich Acid Gas (65 MMSCFD H2S & 25 MMSCFD CO2)
 - Originally sent to Claus-SRU for Elemental Sulfur
 - Now Compressed, Liquified, and Pumped into Formation
 - Largest-known Facility for AG-Injection in Operation
 - CO2 for Compression to Pipeline for EOR Fields

ExxonMobil LaBarge / Shute Creek Facilities Overall Block Flow Diagram

Source: EXOM / RM-GPA Mtg / Sept 1985

ExxonMobil LaBarge/Shute Creek Facilities CO2 Capture & Compression for EOR CO2 Source and CO2 Flood Locations

Source: Melzer Consulting / 6th Annual Conference on CC&S Conf-Pittsburgh / 10May2007

Gas Processing Solutions LLC

ExxonMobil Shute Creek NG Plant **Selexol Unit Process Flow Diagram H2S Removal Section**

Source: Stearns Rogers / AIChE Mtg / August 1983

ExxonMobil Shute Creek NG Plant Selexol Unit Process Flow Diagram H2S Removal Section

ExxonMobil Shute Creek NG Plant Selexol Unit Process Flow Diagram CO2 Removal Section

Source: Stearns Rogers / AIChE Mtg / August 1983

ExxonMobil Shute Creek NG Plant Selexol Unit Process Flow Diagram CO2 Regeneration Section

ExxonMobil Shute Creek NG Plant CO2 Capture & Compression for EOR **Existing CO2 Compression & Pipeline Steps**

- Selexol Unit Supplies CO2 at 200 & 60 (& LP?) psia
- 270 MMSCFD (15673 STD) CO2 Compressed to 1750 psig
 - 49,000 HP in 4 Compressor Trains
 - Supplied by Dresser-Rand
- CO2 is transported via 2 pipelines
 - 24-inch diameter / 48-mile long line
 - 20-inch diameter / 112-mile line

ExxonMobil Shute Creek NG Plant **CO2 Capture & Compression for EOR Expansion of CO2 Compression & Pipeline**

- Expansion of Facilities for Additional 110 MMSCFD (6385 STD) CO2 for Pipeline EOR
- Fully-funded \$72MM Project:
 - Detailed Design in November 2007
 - Long-lead Equipment Purchases Initiated in May 2008
 - Construction Initiated in late-2008
 - Commissioning Targeted by June 2010
 - Project Engineering Execution:
 - 25 EXOM Engineering Staff
 - 15 Washington Group Engineering Staff

ExxonMobil Shute Creek NG Plant **CO2 Capture & Compression for EOR Expansion of CO2 Compression & Pipeline**

- Single 20,000-HP MP/HP compressor and a 3,000-HP LP compressor, both supplied by Dresser-Rand
 - LP Compressor is a Dresser-Rand DATUM Model D6R4S -- radial (barrel-type) design with 4 impellers with a straight-thru casing configuration
 - MP/HP Compressor is a Dresser-rand DATUM Model D10R8B -- radial (barrel-type) design with 8 impellers with a back-to-back casing configuration
- Will be the largest compressor unit in ExxonMobil **USA Production Operations**

ExxonMobil Shute Creek NG Plant CO2 Capture & Compression for EOR CO2 Compression – Existing & Expansion

Workshop on Future Large CO2 Compression Systems Large CO2 Source & Capture Systems Agenda

- CO2 Pipelines in USA for EOR
- 3 Large CO2 Source/Capture/Compression Plants
 - ExxonMobil LaBarge-Shute Creek, WY <u>Natural Gas</u> Plant
 - CDT Inc / Lubbock, TX CO2-from-*CFPP-Flue Gas*
 - Coffeyville Resources (KS) <u>Gasification</u>-based Fertilizer Plant

Carbon Dioxide Technology Corp 1150 STD CO2 from Coal-Fired PP in Lubbock, TX Operational 1983-1984 for EOR Floods

Gas Processing Solutions LLC

Source: NTNU - 2003

CO2 Capture from CFPP Flue Gas EPRI-Nexant Report # 1014924 Amine Process Flow Diagram

CO2 @ B.L @ 21.3 psia

CO2 Capture from Flue Gas EPRI-Nexant Report # 1014924 CO2 Compression Process Flow Diagram

Gas Processing Solutions LLC

Workshop on Future Large CO2 Compression Systems Large CO2 Source & Capture Systems Agenda

- CO2 Pipelines in USA for EOR
- 3 Large CO2 Source/Capture/Compression Plants
 - ExxonMobil LaBarge-Shute Creek, WY *Natural Gas* Plant
 - CDT Inc / Lubbock, TX CO2-from-*CFPP-Flue Gas*
 - Coffeyville Resources (KS) <u>Gasification</u>-based **Fertilizer Plant**

Coffeyville Resources / USA Gasification-based NH3 Plant w Full CO2 Capture Key Processing Design Features

NH3 / UAN Fertilizer Complex (Commissioned July 2000):

- **1140 MTD Ammonia Production**
- **1800 MTD Urea Ammonium Nitrate Solution Production**
- Coffeyville Resources Refinery Pet Coke as Feedstock (1270 MTD)
- GE Quench Gasifiers (2 x 100%) @ ~42 barg pressure
- Linde (BOC) ASU Outside Battery Limits (1450 MTD O2)
 - High Purity N2 to NH3 Synthesis Loop
 - O2 to Gasifier
- 2-Stage Sour CO-Shift
- 2-Stage Selexol Unit AGRU (UOP) for separate H2S & CO2 Capture
- 10-bed PSA (UOP) for High-Purity H2 to NH3 Synthesis Loop
 - 101,900 NM3/Hr of 99.3%V H2 with <5 ppmv CO_x & <5 ppbv Sulfur

Coffeyville Resources / USA Gasification-based NH3 Plant w Full CO2 Capture Key Processing Design Features (cont)

- Recycle of PSA Tail Gas to CO-Shift Unit (partial blow-down to fuel) for:
 - **Maximum H2 Production**
 - Maximum CO Conversion to CO2
- EPC Black & Veatch Pritchard
- Sulfur Recovery Tessenderlo Kerley
- NH3 / UAN Ammonia Casale / Weatherly
- Well-Operated / Knowledgeable Staff / Many Lessons-Learned
- Profitable and Expanding Capacity
 - USA NH3 Industry Based on NG Virtually Eliminated in Past 5 Years

Coffeyville Resources Plant Block Flow Diagram

Gas Processing Solutions LLC

Coffeyville Resources 2-Stage SELEXOL Process Flow Diagram

Source: UOP – GTC Conf 2007

Coffeyville Resources Syngas Composition Post-CO-Shift & Cooling – Feed to Selexol

Feed Flowrate Pressure Temperature	169,000 Nm ³ /hr 36.9 bar-a 38 °C	(151 MM SCFD) (535 psia) (100 °F)
Component H ₂	Mole %	
CO CO ₂	~ 1.2 ~ 41	2 Stages of CO-Shift
H ₂ S and COS CH ₄ , Ar, & N ₂ H ₂ O	~ 0.6 ~ 1 Saturated	CO2/H2S Ratio ~ 70/1

Source: UOP - GTC Conf 2002

Coffeyville Resources / USA Gasification-based NH3 Plant w Full CO2 Capture CO2 Purification & Compression for UAN

- ~1/3 of the CO2 (~ 780 STSD) for the CO2 **Compressors at ~150 psia for Urea Production**
- ~2/3 of the CO2 is Presently Vented at ~5 psig
- HP CO2 for Urea goes through Pre-Purification Steps before Compression for Removal of Sulfur (H2S/COS) and H2/CO to Trace Levels
- CVR uses a Single Dresser-Rand Reciprocating **Compressor to Compress the CO2 from about ~150** to 3800 psig in three stages using 2500 HP

Coffeyville Resources CO₂ (for UAN) Trim Purification PFD

Coffeyville Resources Ammonia-UAN Fertilizer Complex – Kansas, USA **CO2 Purity – Pre & Post CO2 Purification**

Component	Mole %
Hydrogen	<5%
Carbon Dioxide	95%
Hydrogen Sulfide	< l ppm
Methane, CO & inerts	<0.5%
Carbonyl Sulfide	10 ppm
Feed Flowrate, MMSCFD	≤11
Pressure, psia	<150
Temperature, F	28

Raw CO2 from Selexol Unit to Pre-Purification Unit Source: UOP LLC (a Honeywell Company) & BV Pritchard Presentation Laurence Reid Gas Conditioning Conference / March 2000

Gas Processing Solutions LLC

<u>Component</u>	Mole %
CO2	99.32
H2	Nil
CH4 & CO	Nil
H2S & COS	Nil
H2O	0.68 (Saturated @ 140 psia and 100^{0} F)

Pressure Temperature ~140 psia $\sim 100^{\circ} F$

Coffeyville Resources Ammonia-UAN Fertilizer Complex – Kansas, USA Aerial View of Plant

Source: UOP – GTC Conf 2002

Coffeyville Resources (UOP) SELEXOL and PSA Units

Source: UOP – GTC Conf 2002

CVR Fertilizer Complex Blueprint for IGCC w CO2 Capture

IGCC with CO₂ Capture **Block Flow Diagram**

Coffeyville Resources Plant Block Flow Diagram

Gas Processing Solutions LLC

Coffeyville Resources Fertilizer Plant Path Forward to IGCC w CO2 Capture

- Solid (Pet Coke) Feedstock ۲
- Quench Gasifier for CO-Shift-Ready Syngas ۲
- 2-Stage Sour CO-Shift for High CO Conversion ۲
- 2-Stage Selexol for Separate H2S and CO2 Capture ۲
 - CO2 Capture > 90%
 - Portion of CO2 Delivered at Elevated Pressure for Compression
 - Portion of CO2 "Sequestered" via N2-Fixation (Fertilizer)
- Combination of H2 and N2 for NH3 Synthesis ۲
 - (For IGCC combination to Gas Turbine)
- **CO2 Trim Purification (dependent upon specifications)** ۲
- **Production of High-Purity H2 by PSA** ۲
 - (Potential for Fuel Cell Usage)

Coffeyville Resources Fertilizer Plant – foreground Coffeyville Resources Refinery – background Thank You & Questions!

