

Accelerating the next technology revolution

Mask Metrology – Current and Future Challenges

Greg Hughes SEMATECH 257 Fuller Road Suite 2200 Albany, NY 12203

Copyright ©2008 SEMATECH, Inc. SEMATECH, and the SEMATECH logo are registered servicemarks of SEMATECH, Inc. International SEMATECH Manufacturing Initiative, ISMI, Advanced Materials Research Center and AMRC are servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.

Outline

- Mask Making Process Flow
- Process Control Enabled by Metrology
- Metrology in the Real Pattern Environment
- Challenges of Changing Environment
- Key Take-away Points

		Substrate Cutting
Photomask – In use		Polishing
	Mask	Flatness Metrology
illuminator	Substrate/Blank	Absorber Deposition
		Defect Metrology
condenser		Resist Coat
		Patterning
		Develop
(reticle)	Pattornad Mack	Absorber Etch - Resist Strip
	Fallemeu Mask	CD Metrology
		Registration Metrology
		Defect Inspection
reduction		Repair
lens		Repair Qualification
silicon		Pellicle
wafer		Defect Inspection
		Wafer Print
	Water Printing	Wafer Inspect

Wafer CD and Overlay

Substrate to Blank Fabrication

Substrate Cutting
Polishing
Flatness Metrology
Absorber Deposition

Defect Metrology

Metrology Needed Flatness Absorber Quality Defects

Year of Production	2010	2013	2016	2019
(contacted)	45	32	23	16
Defect size (nm) [N] *	36	25	18	13
Blank flatness (nm, peak-valley) [O]	165	117	83	59

Mask-Making Process Flow

2013

32

4

50

3.8

2.2

1.4

4

1.3

25

Process Control – Enabled by Metrology	SEMATECH
Metrology best close to the point of generation	Substrate Cutting
	Polishing
Pattern Writing	Flatness Metrology
	Absorber Deposition
	Defect Metrology
Registration	Resist Coat
Dottorn Etabing	Patterning
Pattern Etching	Develop
CD	Absorber Etch - Resist Strip
Pagistration Strace Dattorn Strace reliaf	CD Metrology
Registration – Stress Pattern Stress relief	Registration Metrology
Defect Creation – Everywhere	Defect Inspection
	Repair
Substrate, Blank, Resist Coating, e-beam, Develop,	Repair Qualification
Etching Cleaning	Pellicle
Etormig, oroannig	Defect Inspection
	Wafer Print
	Wafer Inspect
	Wafer CD and Overlay

Best Process Control – CD

Redo – wafer OPC – big effort not done

-e-beam proximity correction

No feedback loops today

-Wafer OPC

Future

Keep process constant (unique writers, etchers, etc., of process)

Post-develop metrology for feed-forward correction – mean

Best Process Control – Registration Metrology best close to the point of generation Patterning **Registration Signatures** Develop Pattern Writing Absorber Etch - Resist Strip Pattern registration global CD Metrology Charging, mask placement sag shifts, mask clamping or slipping Fine shot placement **Registration Metrology** Pattern Etching **Defect Inspection** Absorber stress relief Repair Pattern-dependent registration error Pellicle Application Repair Qualification Re-apply or improve process Pellicle **Registration Correction – Second Mask Registration Metrology** Global terms Writing the second mask with corrected registration grid

Future –

Calculate stress errors, charging errors and correct before writing the mask

Defects Analysis - Metrology

- Locate the defect such that it can be found in metrology tool
- Analysis of the defect
 - SEM / EDACS / AFM
 - Issue Smaller defects less material to study
 - Often things that cause small defects cause big ones
 - Pareto of defects
 - Understanding of process and tool to see what needs fixing or redesign

- 25 nm defects must be eliminated
- Identifying the source of defect is very challenging
- Even at 70 nm, only 30~50% of the defects' elements can be identified

Demo Results – Non-conductive Surface (1) EDX (current system)

Auger

* Plate ID: 908AGC30, quartz substrate with thin Ir coating

Metrology in the Real Pattern Environment

Most metrology works best with special targets

- Not the true story
 - Real patterns

Real pattern loading and environment

Real Mask Cross Sections

Challenges of Changing Environment

SEM images of the mask no longer represent the wafer image MEEF – Driven by different Illuminations

- OPC Patterns
- Subresolution Patterns
- Source Mask Optimization Patterns
- Inverse Lithographic Patterns

Combination OPC

Inverse Lithography Masks

A portion of the 65nm metal 1 design (a) is converted to a pixelated phase mask design (b), where red represents 180° phase shift pits and green represents 0°, and projected by the stepper forming the resist image in (c). *WaferNews* source: Intel Corp.

Common Solution

- Wafer Lithography?
- AIM Metrology
 - Represents real Imagery
 - Does not tell what the problem is

Aerial Imaging

Mask Layout

Setting 1: Disar Illumination CDU = 12.5 nm (3σ @ mask)

Wafer Print

Setting 2: Annular Illumination CDU = 74.2 nm (3σ @ mask)

Aerial Image

Aerial imaging •Shows what wafer will image

But it needs Illumination to be the same as the stepper

Challenges of Changing Environment

- Optical Double Patterning Near-Term
- EUV Lithography
- Imprint Lithography

Specification Challenges

	Optical	EUVL	Imprint
Year of Production	2013	2013	2013
DRAM ½ pitch (nm) (contacted)	32	32	32
MPU Gate CD control (3 sigma) (nm) [B]	1.4	1.4	1.4
Overlay (3 sigma) (nm)	6.4	6.4	6.4
Mask magnification [B]	4	4	1
Image placement (nm, multipoint) [F]	3.8	3.8	2.1
Double exposure: dual line, image placement	2.7 / 0.9		
Mask minimum primary feature size [D]	59	59	21
Mask sub-resolution feature size (nm) opaque [E]	42		
CD uniformity (nm, 3 sigma) isolated lines (MPU gates)	1.0	2.0	1.3
CD uniformity (nm, 3 sigma) contacts/vias [K]	1.3	3.5	3.9
Defect size (nm) [N] * (EUV I)	36	26	3.2
Blank flatness (nm, peak-valley) [O]	175	50	126

Off-target of DPT features :

Layer	Off-target (nm)	CDU (nm,3σ)
1	1.3	3.0
2	1.6	3.3

Matching of Signatures :

Correlation	Max Deviation
Coefficient	(nm)
0.86	1.9

EUV Lithography Challenges (ieuvi.org)

EUV Substrate to Blank Fabrication

Defects

Flatness Metrology

Substrate Cutting

Absorber Deposition

Defect Metrology

Year of Production	2010	2013	2016	2019
(contacted)	45	32	23	16
Defect size (nm) [N] *	36	25	18	13
Blank flatness (nm, peak-valley) [O]	165	117	83	59
EUVL Mask substrate flatness (nm peak-to-				
valley) [O]	46	32	23	16

Flatness Thickness Metrology and Correction

ITRS Roadmap (2007): Requirements for Masks

All values are on the mask	2009	2013
Required Mask Image Placement (IP)	6.4nm	3.8nm
EUV Substrate Flatness	57nm	36nm
» IP contribution from Z height	5.7nm	3.6nm

40 nm L/S EUV Litho

EUVL Capture with Lasertec 7360

Down to 3.5 nm high / 45 nm wide defects on ML.

o.8 -	_	1								
- 9.0 Efficienc	17.									
Capture Capture			2							
0.2	K	J	I H	G	F	E	D	С	В	Α
0.0	+				C	100		D		

Year of Production	2007	2010	2013
DRAM/ MPU ½ pitch (nm)	68	45	32
Pattern Defect size (nm) [N] *	55	36	25
EUVL Substrate defect size (nm)		37	32
EUVLsubstrate flatness (nm ptv)		46	32

Key Take-away Points

- Metrology is the key to process control and improvement –
 - Stability of process and metrology key to improving
- Metrology of the real device pattern drive performance
- Addressing the needed metrology of the future is key to meeting the future needs
- Metrology is not only an enabler; it is a necessity

Thanks

- SEMATECH Mask & EUV Group
 Yun, Cha, Sohn, Linn, Gabella, Litt
- Commercial Mask and Blank manufacturers
 Toppan, Photonics, DNP, Hoya, AGC