Positioning More than Moore Characterization Needs and Methods within the ITRS

Mart Graef

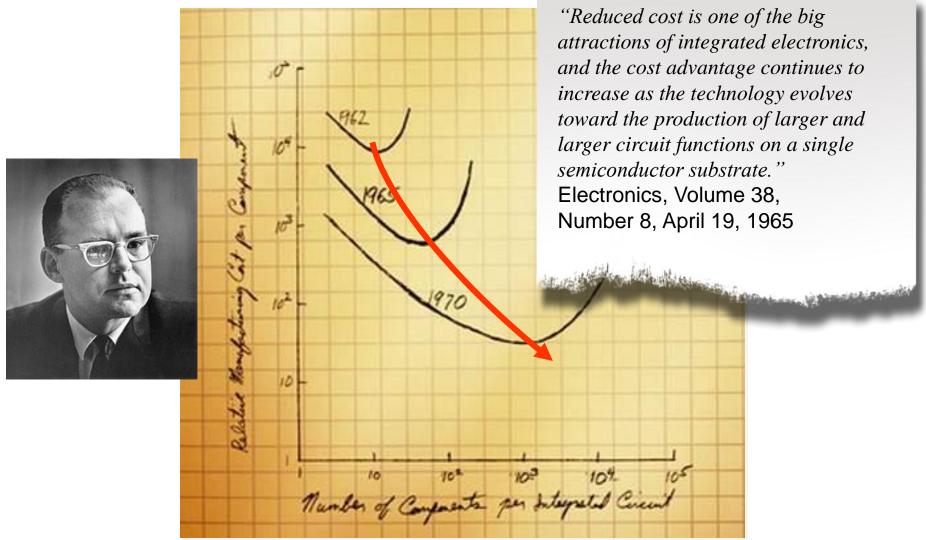
May 26, 2011

2011 International Conference on Frontiers of Characterization and Metrology for Nanoelectronics

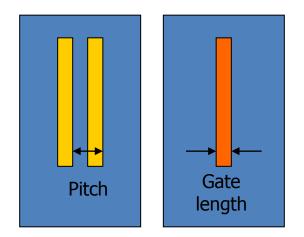
Overview

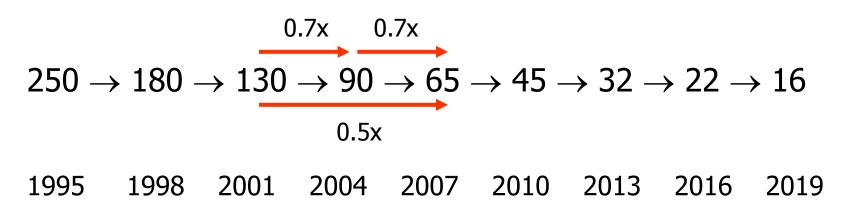
- Miniaturization
- The ITRS roadmapping process
- New territory: More than Moore
- Characterizing More than Moore

Miniaturization



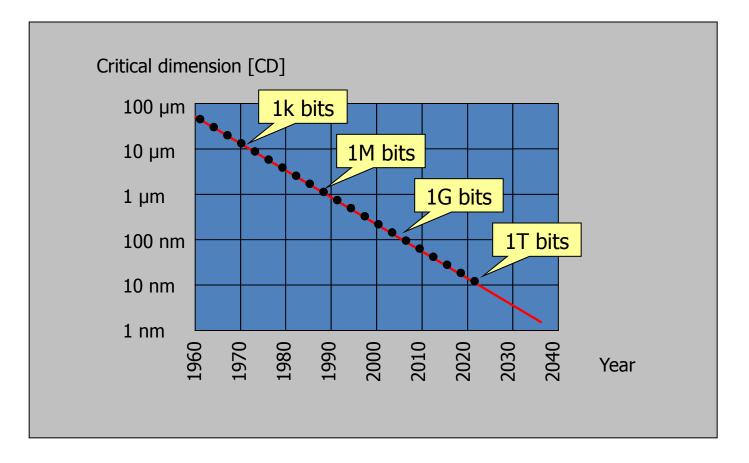
Gordon Moore, 1965


Courtesy Paolo Gargini, Intel

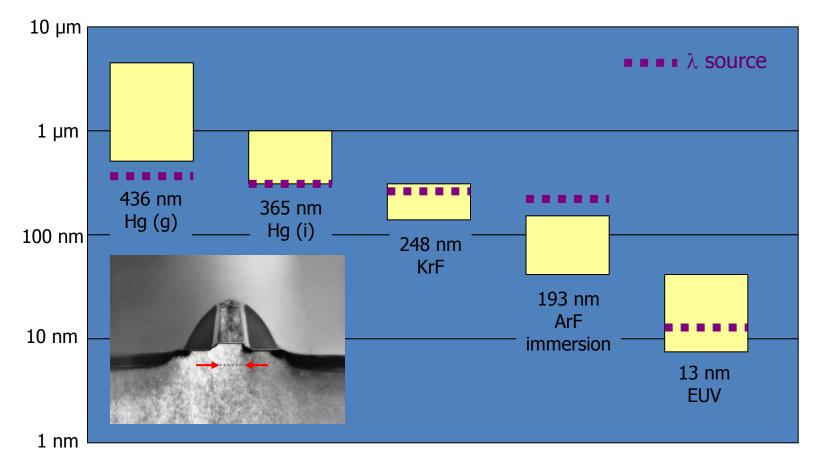

TUDelft

CMOS Transistor Scaling

Scaling S = $\frac{1}{2}\sqrt{2} \approx 0.7$ /cycle (0.5x per 2 technology cycles)


Critical dimension (half pitch, gate length) [nm]:

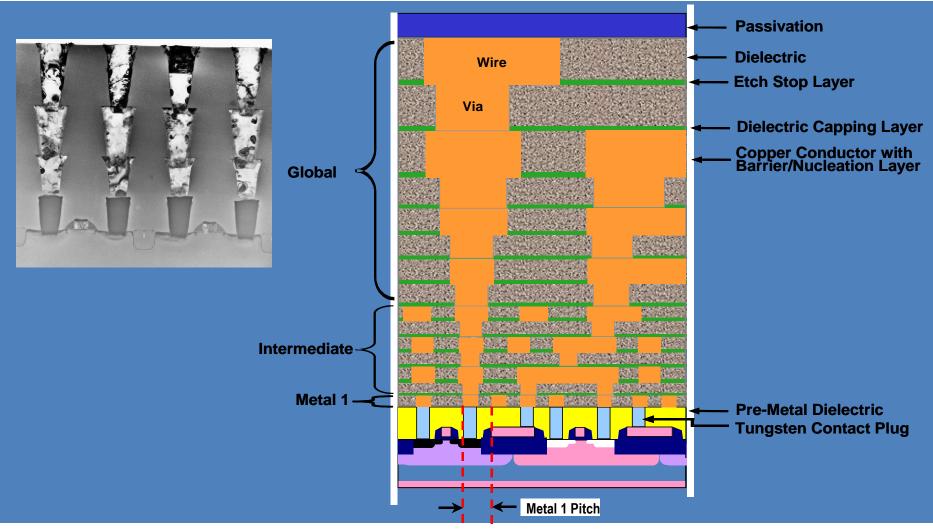
Moore's Law: Miniaturization



IC-FCMN 2011

Scaling and Lithography

Minimum dimension



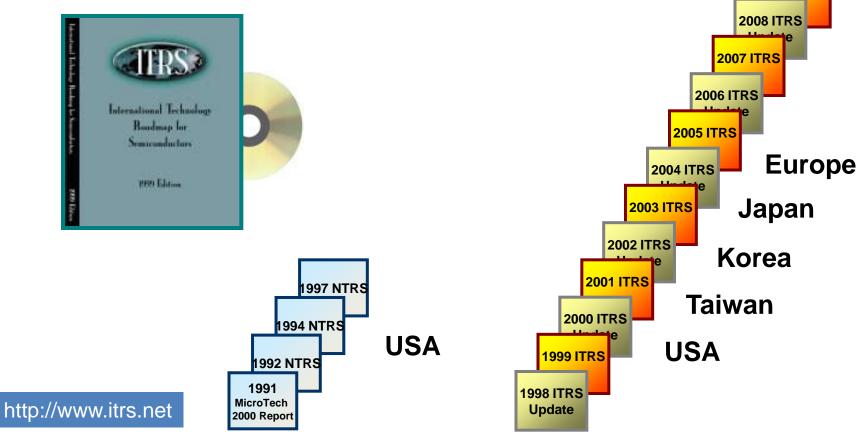
IC-FCMN 2011

Typical Interconnect Stack

IC-FCMN 2011

The ITRS roadmapping process

Why create a roadmap?



Cooperation:

The concept of 'pre-competitive' technology research

	Product	Product	Product	Product
Proprietary	Process	Process	Process	Process
	Flow	Flow	Flow	Flow
	Process	Process	Process	Process
	Control	Control	Control	Control
	Process	Process	Process	Process
	Recipe	Recipe	Recipe	Recipe
Pre-competitive	Process	Process	Process	Process
	Equipment	Equipment	Equipment	Equipment
	1970 >	1980 >	1990 >	2000 >
Ť UDelft		IC-FCMN 2011		11 TRS

International Technology Roadmap for Semiconductors (ITRS) 1998 - now

ITRS Objective

 Provide guidance to the semiconductor industry by predicting technology trends in the industry, spanning 15 years (near-term 1-6 yrs; long-term 7-15 yrs)

Organization and implementation

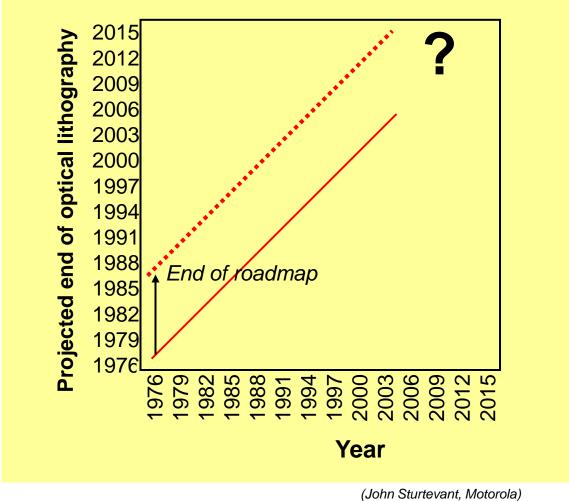
- Organization
 - International Roadmap Committee (IRC)
 - 16 international technology working groups (ITWGs)
- ITRS release every 2 years
 - 16 chapters, ~1000 pages, >200 tables
 - >300 contributors, representing >50 companies ww
 - Update of tables every other year
- 3 Workshops/year
 - Europe (spring / Semicon Europa)
 - USA (summer / Semicon West)
 - Asia (winter / Semicon Japan)
- 2 Public symposia/year (incl. press conference)
 - ~130 participants

Technology Working Groups

- 1. System Drivers
- 2. Design
- 3. Test & Test Equipment
- 4. Process Integration, Devices & Structures
- 5. RF and Analog/Mixed Signal
- 6. Emerging Research Devices
- 7. Emerging Research Materials
- 8. Front End Processes
- 9. Lithography
- 10. Interconnect
- 11. Factory Integration
- 12. Assembly & Packaging
- 13. Environment, Safety & Health
- 14. Yield Enhancement
- 15. Metrology
- 16. Modeling & Simulation

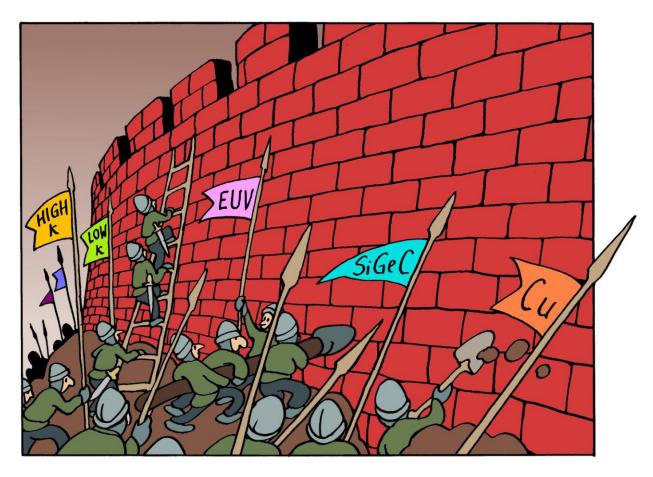
Impact of the ITRS

- Provides a benchmark for the semiconductor industry
- Identifies technology challenges
- Generates industrial research agenda
- Can be (mis)used for marketing purposes


When will the roadmap end?

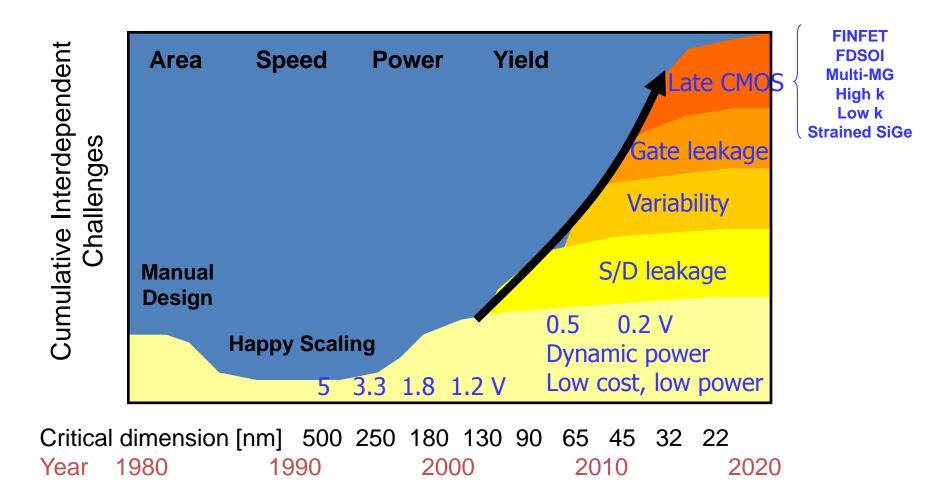
IC-FCMN 2011

The end of lithography? The roadmap of the roadmap


Lithography requirements

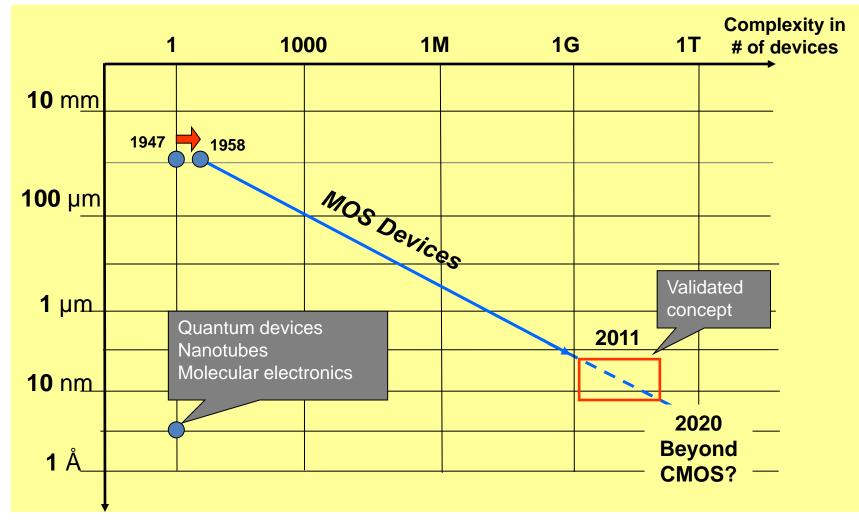
								· · · · ·								
Year of Production	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
DRAM ½ pitch (nm) (contacted)	52	45	40	36	32	28	25	23	20	18	16	14	13	11	10	9
DRAM																
DR4M ½ pitch (nm)	52	45	40	36	32	28	25	23	20	18	16	14	13	11	10	9
CD control (3 sigma) (nm) [B]	5	4,7	4,2	3,7	3,3	2,9	2,6	2,3	2,1	1,5	1,7	1,5	1,3	1,2	1,0	0,9
Contact in resist (nm)	57	50	44	39	35	31	28	25	22	20	18	16	14	12	11	10
Contact after etch (nm)	52	45	40	36	32	28	25	23	20	18	16	14	13	11	10	9
Overlay [A] (3 sigma) (nm)	10	9,0	8,0	7,1	6,4	5,7	5,1	4,5	4,0	3,6	3,2	2,8	2,5	2,3	2,0	1,8
k1 193 / 1.35NA	0,36	0,31	0,28	0,25	0,22	0,20	0,18	0,16	0,14	0,12	0,11	0,10	0,09	80,0	0,07	0,06
kl EUVL		0,83	0,74	0,66	0,59	0,52	0,47	0,58	0,52	0,46	0,41	0,37	0,33	0,42	0,37	0,33
Flash																
Flash ½ pitch (nm) (un-contacted poly)	38	32	28	25	23	20	18	16	14	13	11	10	9	8	7	6
CD control (3 sigma) (nm) [B]	4	3,3	2,9	2,6	2,3	2,1	1,9	1,7	1,5	1,3	1,2	1,0	0,9	0,8	0,7	0,7
Contact Pitch (nm)	219	190	170	151	135	120	107	95	85	76	67	60	53	48	42	38
Contact after etch (nm)	52	45	40	36	32	28	25	23	20	18	16	14	13	11	10	9
Overlay [A] (3 sigma) (nm)	12	10,5	9,4	8,3	7,4	6,6	5,9	5,3	4,7	4,2	3,7	3,3	2,9	2,6	2,3	2,1
k1 193 / 1.35NA	0,26	0,22	0,20	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,08	0,07	0,06	0,06	0,05	0,04
kl EUVL		0,61	0,55	0,49	0,43	0,39	0,33	0,41	0,37	0,33	0,29	0,26	0,23	0,29	0,26	0,23
MPU																
MPU/ASIC Metal 1 (M1) ½ pitch (nm)	54	45	38	32	27	24	21	19	17	15	13	12	11	9	8	8
MPU gate in resist (nm)	47	41	35	31	28	25	22	20	18	16	14	12	11	10	9	8
MPU physical gate length (nm) *	29	27	24	22	20	18	17	15	14	13	12	11	10	9	8	7
Gate CD control (3 sigma) (nm) [B] **	3,0	2,8	2,5	2,3	2,1	1,9	1,7	1,6	1,5	1,3	1,2	1,1	1,0	0,9	0,8	0,8
Contact in resist (nm)	66	56	47	39	33	29	26	23	21	19	17	15	13	12	10	9
Contact after etch (nm)	60	51	43	36	30	27	24	21	19	17	15	13	12	11	9	8
Overlay [A] (3 sigma) (nm)	13	11	9,5	8,0	6,7	6,0	5,3	4,7	4,2	3,8	3,3	3,0	2,7	2,4	2,1	1,9
k1 193 / 1.35NA	0,37	0,31	0,26	0,22	0,19	0,17	0,15	0,13	0,12	0,11	0,09	0,08	0,07	0,07	0,06	0,05
kl EUVL		0,83	0,70	0,59	0,50	0,44	0,39	0,49	0,44	0,39	0,35	0,31	0,28	0,35	0,31	0,28
Chip size (mm ²)																
Maximum exposure field height (mm)	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
Maximum exposure field length (mm)	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
Maximum field area printed by exposure tool (mm ²)	858	858	858	858	858	858	858	858	858	858	858	858	858	858	858	858
Wafer site flatness at exposure step (nm) [C]	48	42	37	33	29	26	23	20	18	16	14	12	11	10	9	8
Number of mask levels MPU	35	35	35	35	37	37	37	37	39	39	39	39	39	39	0	0
Number of mask levels DRAM	24	26	26	26	26	26	26	26	26	26	26	26	26	26	0	0
Wafer size (diameter, mm)	300	300	300	300	300	450	450	450	450	450	450	450	450	450	450	450
	•	•	•													
NA required for Flash (single exposure)		N	A													
NA required for logic (single exposure)	1,16	1,38	1,64	1,94	2,31											
NA required for double exposure (Flash)	1,02	1,22	1,36	1,53	1,72	1,93	2,17									
NA required for double exposure (logic)	0,80	0,95	1,12	1,34	1,59	1,78	2,00									
EUV NA minimum		0.25	0,25	0.25	0.25	0.25	0,25	0.35	0,35	0.35	0.35	0.35	0,35	0.5	0.5	0.5

"The Red Brick Wall"



20

More Moore: Increasing complexity



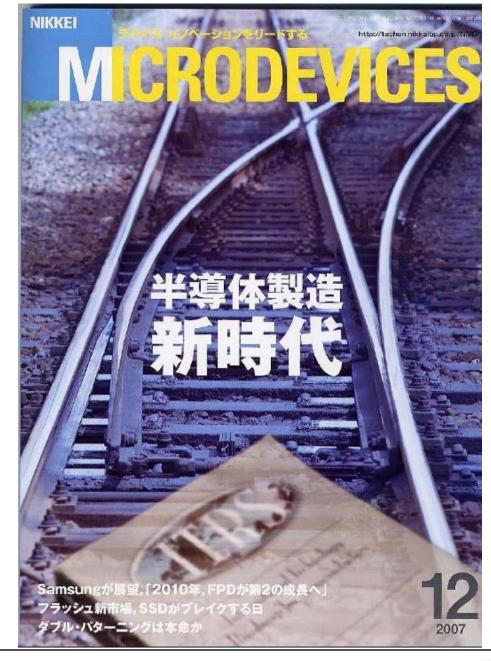
21

ťUDelft

Reaching dimension/complexity limits

Source: STMicroelectronics

New territory: More than Moore

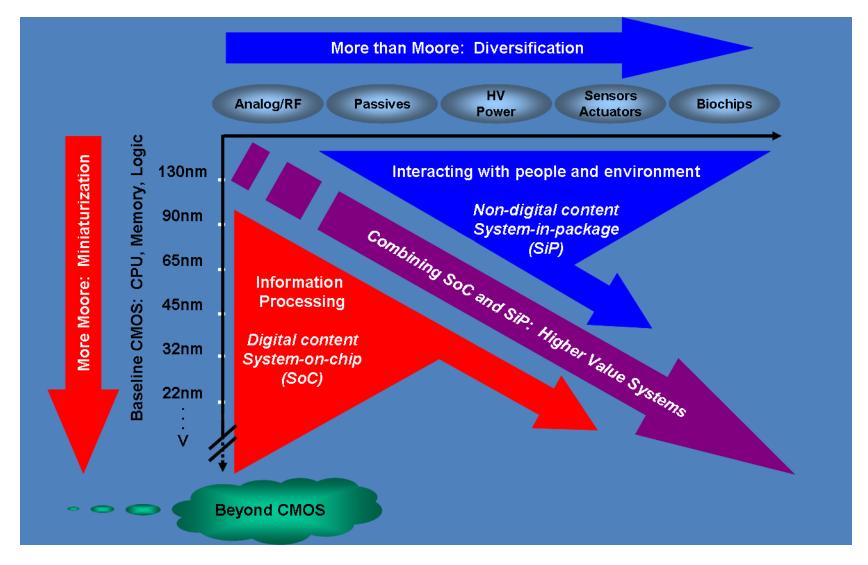


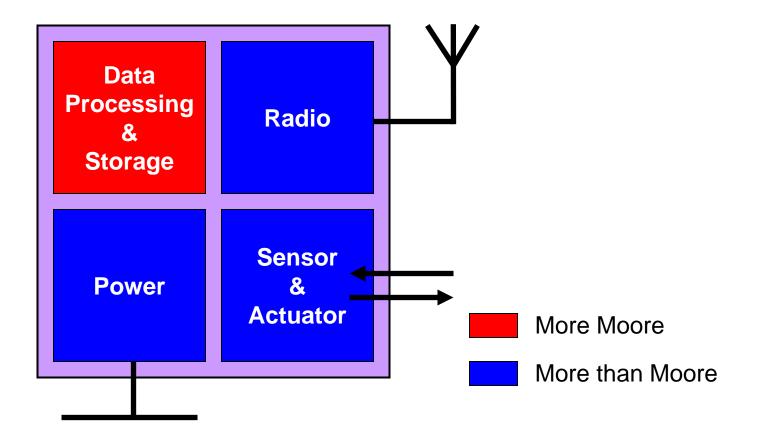
Roadmap at the crossroads

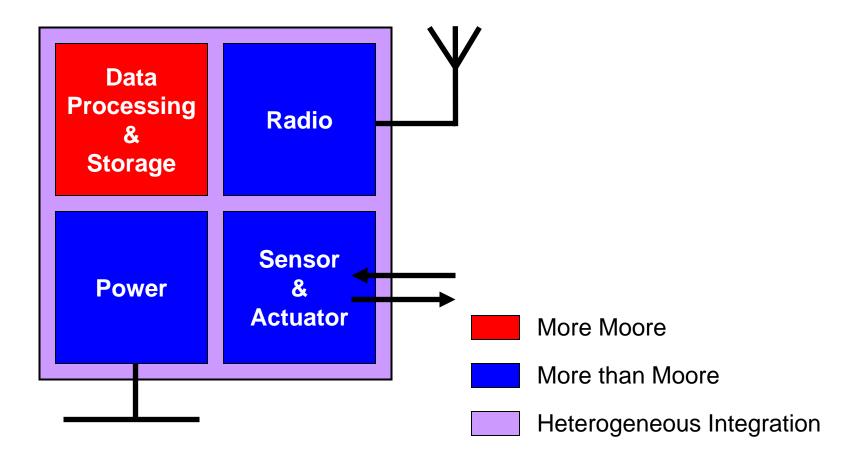
ITRS 2005

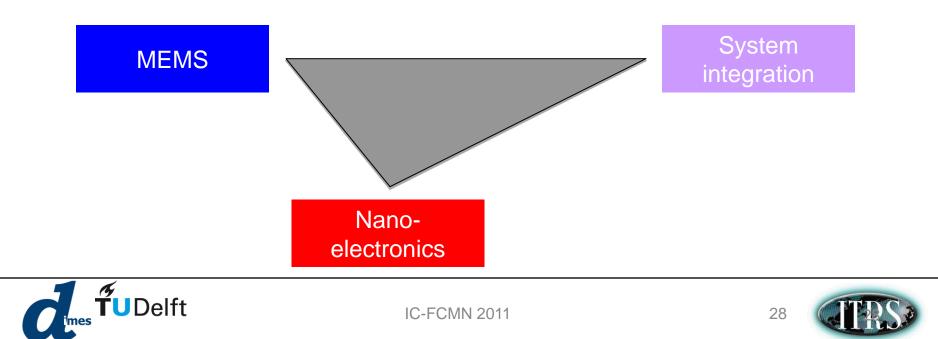
TUDelft

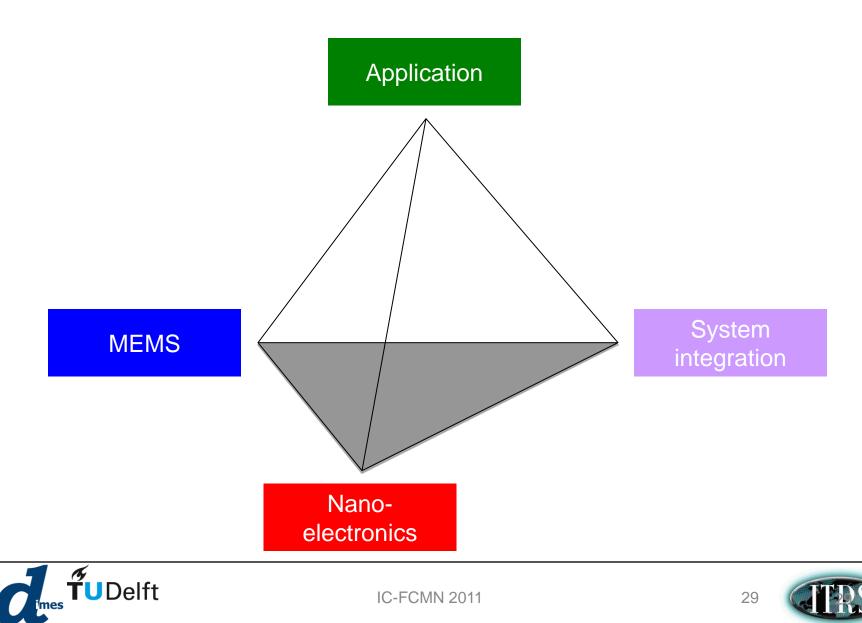
mes



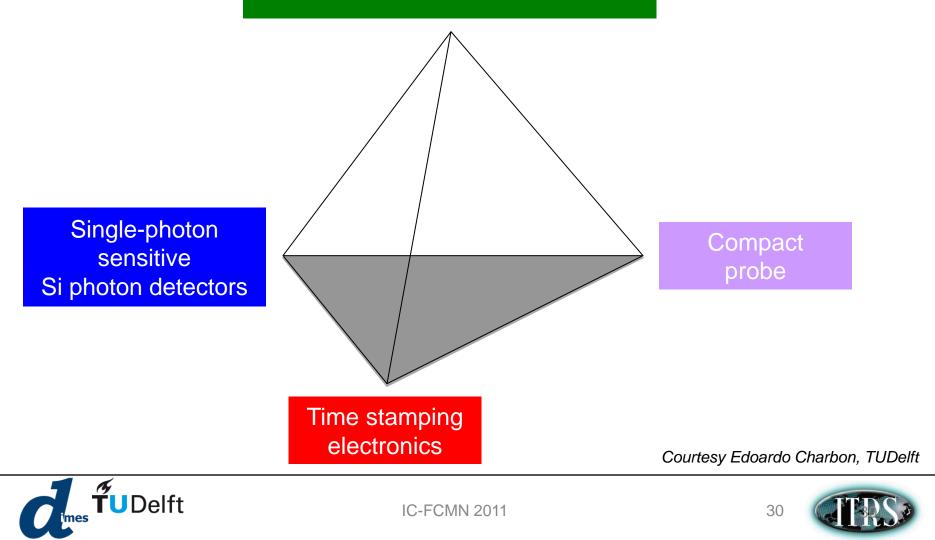

"More Moore" & "More than Moore"


Smart microsystems: More Moore & More than Moore


Smart microsystems: More Moore & More than Moore



Technology Framework



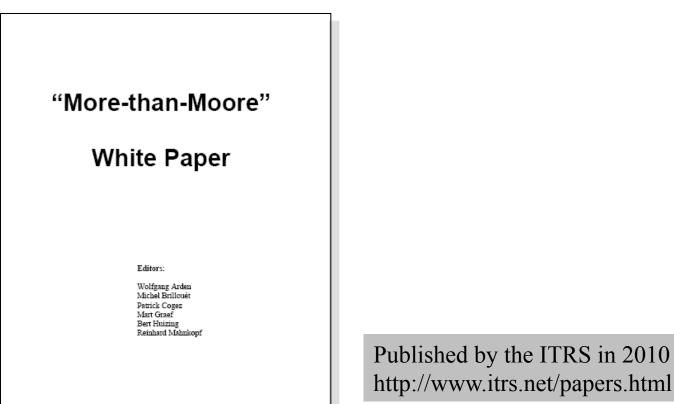
Technology-Application Framework

Example: healthcare domain

Radiotracer- & fluorescence-guided surgery, biopsy, diagnostics

Characterizing More than Moore

IC-FCMN 2011


Why a More than Moore roadmap ?

- ITRS has demonstrated value of roadmapping for CMOS
 - Identify pre-competitive research domains, enabling cooperation between industries, institutes and universities.
 - Sharing of R&D efforts
 - Increase resource efficiency through focus
 - Reduction of development costs and time
 - Synchronization of the equipment & materials community with the semiconductor manufacturing community
- More than Moore roadmapping offers a similar but more challenging opportunity
 - Need to propose a roadmapping methodology
 - White paper

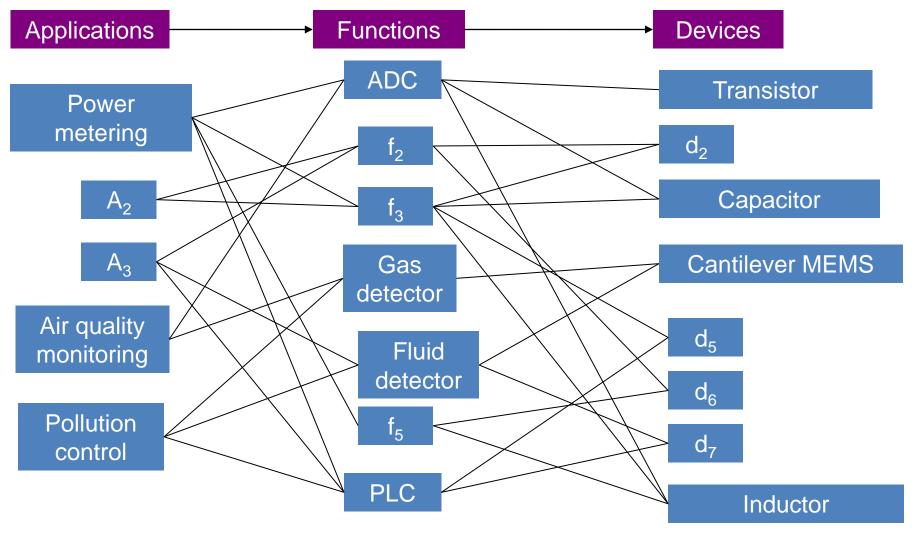
More than Moore White Paper Roadmapping Methodology

33

Necessary conditions for an industry-wide technical roadmap effort

- Restricted set of figures of merits (FOM)
- Convergence of opinion among a majority of the key players on the progress trends that these figures of merit are expected to follow (LEP)
- Potential market of significant size inducing a wide applicability of the roadmap (WAT)
- Willingness to share information (SHR)
- Existence of a community of players (ECO)

MtM Technology Assessment


	FOM Figure of merit	LEP Law of expected progress	SHR Willing- ness to share	WAT Wide applica- bility	ECO Existing community	In ITRS today?
RF	++	++	+	+/++	+	Yes
Power	+	+	?	=	?	No
Imaging	+	+	?	=	?	No
Sensors / actuators		?	?	++		i.s.n.
Biochips		?		?		No

From applications to functions to devices

1st More than Moore Workshop April 13, 2011 Potsdam

MtM ITRS Workshop

Agenda

08:30 – 08:50 08:50 – 10:15	ITRS White Paper & on-going actions Update ITRS ITWG activities on MtM	M. Graef
	Wireless	J. Pekarik (20mn)
	A&P	B. Bottoms (20mn)
	MEMS (+iNEMI MtM roadmap)	M. Gaitan (20mn)
	CATRENE WG summary	M. Brillouët (25mn)
10:15 – 10:30	break	
10:30 – 12:00	Parallel sessions:	
	Automotive (chair: P. Cogez)	
	Energy / Integr. power (chairs: M.	Graef & B. Huizing)
	Lighting (chairs: M. Brillouët & R.	Mahnkopf)
12:00 – 13:00	lunch	
13:00 – 13:30	Overview sensors for security & health	care M. Brillouët
13:30 – 14:00	3x10' summary of the discussion	rapporteurs
14:00 – 14:10	Wrap-up	M. Brillouët
ITRS		

ITRS TWGs

- Wireless
- Assembly & Packaging
- MEMS

Application domains

- Automotive
- Energy & Power
- Lighting
- Security
- Healthcare

What we talk about when we talk about 'More than Moore'

• System-in-Package:

Integration of digital and non-digital functions in one module

- Power, RF, passives, sensors, fluidics, lighting,...
- Packaging is a functional element

High diversity of technologies: Heterogeneity of materials and designs

- Modular platforms in a structured design environment
- Integration of new materials: interfaces!

Builds on existing CMOS infrastructure

- Lithographic scaling capability controls Moore's law

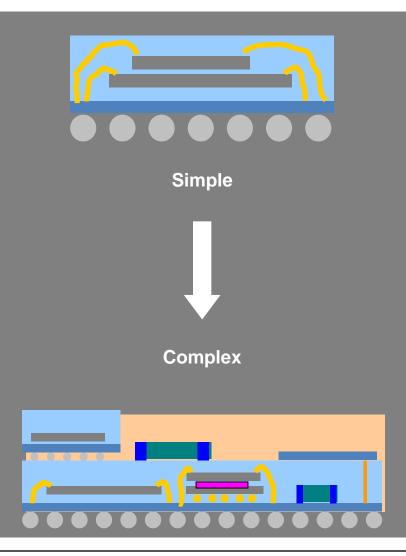
Testing 3D Devices

- Multiple die system
 - Sub-systems designed to operate and be assembled together
 - Process optimized for contents of each die
 - Logic, DRAM, NVM, Analog
 - Connection by potentially 1000s of TSVs
- Design, interconnect, assembly and test problem
- Design for Test requirements
 - Testability of each die
 - Via continuity checks
 - For signal and non-signal vias
 - 3-5 µm via cannot be probed! ESD!
 - N+ die test methodology as die added
 - Final "system" test

void

void

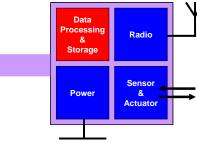
39



Source: Roger Barth, ITRS 2009

Testing System in Package (SiP)

- Challenges
 - High yield with low test cost
 - Standardized test strategy for minisystems
- Potential test solutions
 - Design for die, debug and system test
 - Per die built in system test (BIST)
 - 'Known good die' (KGD) with minimal post test



Source: Roger Barth, ITRS 2009

Characterization needs for More than Moore: Key terms

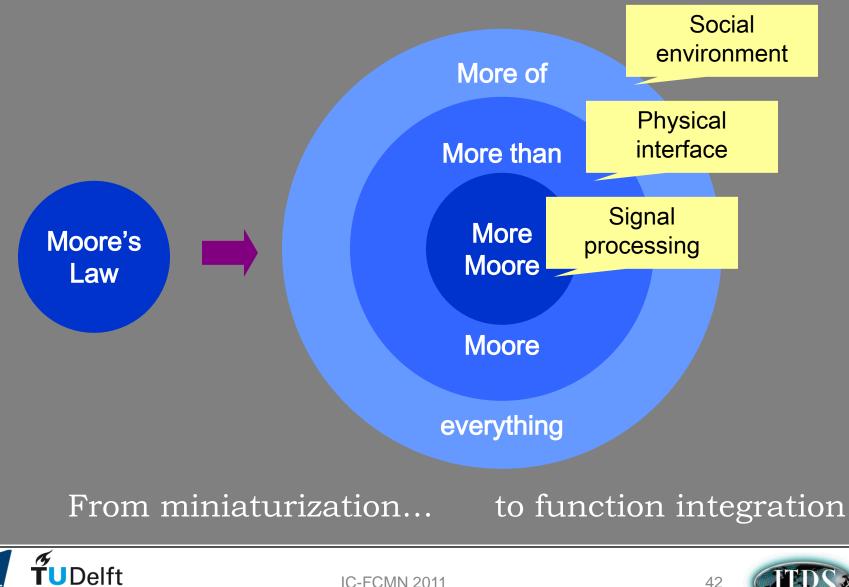
• Multidisciplinarity

Multifunctionality: device characterization requires methodologies from electrical engineering plus...

(micro)mechanics, thermomechanics, materials science, optics, chemistry, biology, medical science,...

Heterogeneity

- 3D structures, multiscale characterization, new interfaces
- Complexity
 - Multi-variability
 - Merging of subsystems (new 'middle end')
- Reliability
 - Packaging is enabling functional component



From Microelectronics to Nanoelectronics

Thank you!

Acknowledgements: International Roadmap Committee ITRS, in particular Patrick Cogez, Bert Huizing, Reinhard Mahnkopf & Michel Brillouët

