Exploring the connections between chelating polymer structure and rare-earth element binding thermodynamics

Michael Schulz
Department of Chemistry, Virginia Tech | mdschulz@vt.edu

Rare-earth elements (REEs: La–Lu, Y, and Sc) are integral to modern technology, but as technological development continues, world demand for these metals will increasingly outpace supply. Consequently, new and sustainable sources are needed, as well as more efficient methods of extraction and purification. Many waste streams—mining effluents, desalination brines, e-waste, and wastewater from semiconductor fabrication plants—contain high concentrations of REEs, which could be extracted. Metal-chelating polymers have great potential in REE extraction and separation applications due to their relatively low cost and high affinity for target elements, but tuning the interaction between the polymer and metal is often challenging. To investigate the interplay between polymer structure and metal chelation, we synthesized metal-chelating polymers with systematic variations in structure (chelating group, tacticity, hydrophobicity, etc.). We then used isothermal titration calorimetry to directly measure the binding affinity, enthalpy changes, and stoichiometry of the interactions between a series of REEs in solution and these metal-chelating polymers. These measurements enabled us to characterize the complete thermodynamic profile of these polymer-metal interactions. Further measurements of changes in heat capacity, along with computational data, reveal the key role of water during metal binding. Ultimately, this structure–function information will be used to design new materials that are more effective for REE extraction and separation.

Friday Nov.18, 2022
10:30 AM (UTC-05:00) Eastern Time (US & Canada) | Hybrid format
Attend in person (room K04B, NCNR) if you have access to the NIST campus, or remotely using the link below.

Click here to JOIN THE MEETING

(see next page for more ways to join)

Biography: Michael D. Schulz is an assistant professor in the Department of Chemistry at Virginia Tech, and a member of the Macromolecules Innovation Institute, the Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, and the Virginia Tech Center for Drug Discovery. He received his Ph.D. in 2014 in organic and polymer chemistry and an M.S. in Pharmaceutical Science at the University of Florida under the supervision of Prof. Ken Wagener. After conducting research at the Max Planck Institute for Polymer Research as a Fulbright Scholar in the group of Prof. Klaus Müllen, he was a postdoctoral scholar in the group of Prof. Robert Grubbs at Caltech. He began his independent career at Virginia Tech in 2017. His diverse research interests span both fundamental and applied polymer chemistry including metal-chelating materials, antiviral polymers, and polymer sequestrants.

IMPORTANT NOTICE: The Webex service allows audio and other information sent during the session to be recorded, which may be discoverable in a legal matter. By joining this session, you automatically consent to such recordings. If you do not consent to being recorded, discuss your concerns with the host ahead of time (susanat@udel.edu) or do not join the session.
DISCLAIMER: Certain commercial equipment, instruments, suppliers, and software are identified to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

More ways to join:

Join from the meeting link
https://nist-secure.webex.com/nist-secure/j.php?MTID=m0fbdbca3fe1e7ac72b5cd219da81f147

Join by meeting number
Meeting number (access code): 2764 492 9492
Meeting password: KeMMpd6N@72

Tap to join from a mobile device (attendees only)
+1-415-527-5035,,27644929492## US Toll
+1-929-251-9612,,27644929492## USA Toll 2

Join by phone
+1-415-527-5035 US Toll
+1-929-251-9612 USA Toll 2
Global call-in numbers

Join from a video system or application
Dial 27644929492@nist-secure.webex.com
You can also dial 207.182.190.20 and enter your meeting number.

Need help? Go to https://help.webex.com