Expanding Upon STR Typing for Human Identification

Peter M. Vallone
DNA Biometrics Team Leader Biochemical Science Division National Institute of Standards and Technology

Gaithersburg, MD 20899

Types of Genetic Variation

-Length Variation
 short tandem repeats (STRs)
 CTAGTCGT[GATA][GATA][GATA]GCGATCGT

- Sequence Variation
single nucleotide polymorphisms (SNPs) insertions/deletions
GCTAGTCGATGCTC[G/A]GCGTATGCTGTAGC

Also copy number variation, methylation, inversions..

Short Tandem Repeat (STR) Markers

An accordion-like DNA sequence that occurs between genes
TCCCAAGCTCTTCCTCTTCCCTAGATCAATACAGACAGAAGACAGG TGGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATA GATATCATTGAAAGACAAAACAGAGATGGATGATAGATACATGCTT ACAGATGCACAC $=12$ GATA repeats (" 12 " is reported)

The number of consecutive repeat units can vary between individuals

The frequency of these repeats observed in the general population have been sampled and are used for the statistical representation of a DNA profile

Target region
[short tandem repeat]

Position of Forensic STR Markers on Human
 Chromosomes

STR Typing - Fragment Analysis

- Extract DNA from sample
- Quantitiate DNA
- PCR amplify DNA (multiplex PCR)
- Separate PCR products (electrophoresis)
- Assign alleles to peaks based on size
- Generally insensitive to sequence variations within the repeat or entire PCR product

Steps in Forensic DNA Analysis

Usually 1-2 day process (a minimum of ~ 8 hours)

Identifiler ${ }_{\text {[Applied Biossstems] }} 15$ STR Loci Kit

Information is tied together with multiplex PCR and data analysis

D8S1179	$\{15,16\}$
D21S11	$\{29,29\}$
D7S820	$\{9,11\}$
CSF1PO	$\{10,11\}$
D3S1358	$\{16,17\}$
TH01	$\{6,7\}$
D13S317	$\{8,12\}$
D16S539	$\{10,11\}$
D2S1338	$\{19,19\}$
D19S433	$\{14,16\}$
VWA	$\{15,17\}$
TPOX	$\{8,12\}$
D18S51	$\{11,15\}$
Amel	$\{X, Y\}$
D5S818	$\{9,11\}$
FGA	$\{19,22\}$

Multiplying the frequency of each genotype at each locus gives us the Random Match Probability (RMP) of 1.25×10^{-15} for unrelated individuals

The chance of an unrelated individual having this exact same profile is 1 in 800 trillion

This test contains the 13 FBI core loci

Electrophoretic Analysis of STRs

Fragment Analysis

- Applications
- Human Identity Testing
- Missing persons, mass fatalities
- Kinship/paternity testing (limited)
- Profiles can be developed in a day
- ~1 ng of DNA required (100s of copies)
- Established typing technology, kits, core markers
- Simple data analysis (single source sample)
- Cost ~\$30 per sample
- Limited information about ancestry, phenotype (eye color hair color), complex kinship scenarios

More information (sequence) is required to address these questions

STR sequence characterization Sanger sequencing

Forensic Science International: Genetics 5 (2011) 329-332

Forensic Science International: Genetics

Short communication
STR sequence analysis for characterizing normal, variant, and null alleles

Margaret C. Kline *, Carolyn R. Hill, Amy E. Decker ${ }^{1}$, John M. Butler

National Institute of Standards and Technology, 100 Bureau Drive, M/S 8312, Gaithersburg, MD 20899, USA

ARTICLE INFO

Article history:

Received 5 April 2010
Received in revised form 23 July 2010
Accepted 8 September 2010

Keywords:

Short tandem repeat
STR typing
DNA sequencing
Allele dropout
Null allele

Abstract

DNA sequence variation is known to exist in and around the repeat region of short tandem repeat (STR) loci used in human identity testing. While the vast majority of STR alleles measured in forensic DNA laboratories worldwide type as "normal" alleles compared with STR kit allelic ladders, a number of variant alleles have been reported. In addition, a sequence difference at a polymerase chain reaction (PCR) primer binding site in the DNA template can cause allele drop-out (i.e., a "null" or "silent" allele) with one set of primers and not with another. Our group at the National Institute of Standards and Technology (NIST) has been sequencing variant and null alleles supplied by forensic labs and cataloging this information on the NIST STRBase website for the past decade. The PCR primer sequences and strategy used for our STR allele sequencing work involving 23 autosomal STRs and 17 Y-chromosome STRs are described along with the results from 111 variant and 17 null alleles.

Non-published variant alleles are being observed on a regular basis as STR typing becomes more wide-spread. To save duplication and to confirm suspicious alleles, these tables are provided for rapid reporting of new variants. When variants are confirmed by sequencing or are published, we include them with the STR fact sheets.

Note: Information regarding variant alleles are submitted by members of the human identity testing community and are listed as provided by the contributor. Allele designations listed in these tables have been determined by comparison to an allelic ladder. Sizes for the same allele may vary for different separation/detection platforms. Off-ladder alleles with a particular STR kit may have corresponding alleles in an allelic ladder from another STR typing kit (e.g., FGA 46.2 is not present in the Profiler Plus kit but is included in the Identifiler kit allelic ladders).

We welcome your contributions in order to more fully catalog the genetic variation observed in these STR loci.

To contribute to these variant allele reports, click here.
605 total variants reported as of 12/28/2011
[click on loci listed below for details]

Performed as a free service to the forensic community

Core STR Loci (401)

- CSF1PO (22)
- FGA (109)
- TH01 (20)
- TPOX (21)
- VWA (13)
- D3S1358 (30)
- D5S818 (17)
- D7S820 (26)
- D8S1179 (22)
- D13S317 (18)
- D16S539 (21)
- D18S51 (47)
- D21S11 (39)

Other Common STR Loci (143)

- D2S1338 (27)
- D19S433 (30)
- Penta D (38)
- Penta E (30)
- D12S391 (1)
- D1S1656 (2)
- D2S441 (4)
- D10S1248
- D22S1045
- SE33 (6)
- D6S1043
- F13A01 (2)
- FES/FPS (1)
- F13B
- LPL
- D1S1677 (1)
- D14S1434 (1)

Y-STR Loci (60)

- DYS19 (3)
- DYS389I (3)
- DYS389II (1)
- DYS390 (2)
- DYS391
- DYS392 (4)
- DYS393 (1)
- DYS385 a/b (19)
- DYS438 (3)
- DYS439 (4)
- DYS437 (3)
- DYS448 (1)
- DYS456 (4)
- DYS458 (10)
- DYS635 (1)
- Y-GATA-H4 (1)

Example of STR Allele Sequencing

Allele sizing is performed with an allelic ladder

D8S1179 repeat motif TCTA $[\text { TCTA }]_{13}$

Steps in STR Allele Sequencing

Re-Amplification

12 GAAA repeats

230	240	250	260	270	280	290	300

DNA sequence analysis

SNPs within the D8S1179 repeat All 3 samples ' 13,13 ' $[\text { TCTA }]_{13}$

Allele A - $[\text { TCTA }]_{13}$
Allele B - TCTA TCTG $[T C T A]_{11}$

Allele B - TCTA TCTG [TCTA] ${ }_{11}$
Allele C - TCTA TCTG $\operatorname{TG} T A[T C T A]_{10}$
There are $\mathbf{4}$ different
' 13 ' alleles in these 3 samples.
Allele D - [TCTA] $]_{2}$ TCTG [TCTA] ${ }_{10}$ Allele D - $[\text { TCTA }]_{2}$ TCTG $[\text { TCTA }]_{10}$

Sequencing of STRs

- Sanger sequencing can provide more information than fragment analysis
- Increased resolution (one-to-one matching)
- Can assist with kinship applications
- Detect
- SNPs within the STR region or PCR products
- Off ladder alleles, null alleles
- Microvariants
- Cannot multiplex, manual workflow, data analysis is more involved than STR typing

Mass Spectrometry

Determine the base composition of a PCR product containing STRs

Not sequencing, but SNPs can be detected
Resear
Enha
for d
John V
Kristir
${ }^{\text {a }}$ Departme
${ }^{\mathrm{b}}$ Institute
${ }^{\text {c }}$ Ibis Biosc

$\mathrm{A}_{10} \mathrm{G}_{20} \mathrm{C}_{12} \mathrm{~T}_{4}->\mathrm{A}_{10} \mathrm{G}_{20} \mathrm{C}_{11} \mathrm{~T}_{5}$ One less C, one more T T to C SNP 'Provides Content not Context'

 $A_{10} G_{20} C_{12} T_{4} \rightarrow A_{10} G_{20} C_{11} T_{5}$

 $A_{10} G_{20} C_{12} T_{4} \rightarrow A_{10} G_{20} C_{11} T_{5}$ One less C, one more T One less C, one more T T to C SNP T to C SNP

 'Provides Content not Context'

 'Provides Content not Context'}
\qquad

597 samples were analyzed by ESI-TOF 7/13 core loci contain a significant number of SNPs within STRs

Table 1
Descriptive statistics for seven most polymorphic STR loci containing SNPs

Locus	Population	STR only analysis on IBIS T5000		
		n	Alleles detected	DP
		182	7	0.9213
D13S317	Caucasian	182	7	0.8607
	African Am.	214	7	0.9445
	Hispanic	193	74	0.9540
	Caucasian	182	14	0.9589
	African Am.	214	20	0.9521
	Hispanic	193	14	0.9226
D3S1358	Caucasian	182	8	0.8923
	African Am.	214	8	0.8939
	Hispanic	193	8	0.8432
D5S818	Caucasian	182	9	0.8932
	African Am.	214	9	0.8679
	Hispanic	193	9	0.9349
D7S820	Caucasian	182	8	0.7
	African Am.	214	8	0.7358
	Hispanic	193	9	0.9324
D8S1179	Caucasian	182	10	0.9239
	African Am.	214	10	0.9303
	Hispanic	193	9	0.9388
	Caucasian	182	10	0.9403
	African Am.	214	11	7
	Hispanic	193	7	0.9108

[^0]Table 1
Descriptive statistics for seven most polymorphic STR loci containing SNPs

Locus	Population	STR only analysis on IBIS T5000			STR-SNP analysis on IBIS T5000		
		n	Alleles detected	DP	n	Alleles detected	DP
D13S317	Caucasian	182	7	0.9213	181	12	0.9705
	African Am.	214	7	0.8607	213	12	0.9528
	Hispanic	193	7	0.9445	193	13	0.9751
D21S11	Caucasian	182	14	0.9540	181	23	0.9780
	African Am.	214	20	0.9589	213	33	0.9708
	Hispanic	193	14	0.9521	193	25	0.9752
D3S1358	Caucasian	182	8	0.9226	181	18	0.9671
	African Am.	214	8	0.8923	213	18	0.9775
	Hispanic	193	8	0.8939	193	18	0.9455
D5S818	Caucasian	182	9	0.8432	181	15	0.9260
	African Am.	214	9	0.8932	213	17	0.9102
	Hispanic	193	9	0.8679	193	13	0.9554
D7S820	Caucasian	182	8	0.9349	181	15	0.9600
	African Am.	214	8	0.7	213	12	0.9376
	Hispanic	193	9	0.7358	193	14	0.9482
D8S1179	Caucasian	182	10	0.9324	181	14	0.9627
	African Am.	214	10	0.9239	213	19	0.9489
	Hispanic	193	9	0.9303	193	16	0.9639
vWA	Caucasian	182	10	0.9388	181	22	0.9580
	African Am.	214	11	0.9403	213	26	0.9766
	Hispanic	193	7	0.9108	193	16	0.9305

DP, discrimination power; H_{e}, expected heterozygosity; H_{o}, observed heter

- DP increased 3.5-5\% per locus compared to nominal STR typing
- SNP-containing alleles could be traced though several generations in some pedigrees

Comparison of the number of differentiable allele categories by three different genotyping technologies

Black = Capillary electrophoresis Gray = Mass spectrometry White = Sanger sequencing

Next Generation Sequencing

Ultra High Throughput Sequencing

- Going in depth into STR loci and beyond
- STRs are useful for legacy (databases)
- Millions of bases of sequence variants (SNPs)
- Opens up new human identity applications: complex kinship, biogeographical ancestry, externally visible traits, degraded samples?, mixtures?, other applications

Applications are currently being addressed by the forensic genetics community (Kayser and deKnijff 2011)

Next Generation Sequencing

 Ultra High Throughput Sequencing- Challenges
- Repeating sequences (STRs) and read lengths
- Sample requirements (10 ng to $5 \mu \mathrm{~g}$)
- Cost and time per unit of information
- Data analysis (storage, assembly, interpretation)
- Policy, privacy, disease related markers
- Validation
- Standards/reference materials
- Accuracy of sequence information
- Errors, platform and bioinformatics-based bias

Single sample - full genome coverage

Multiplexing samples and reduce data set while maintaining quality coverage

96 samples, high depth coverage of the forensically relevant markers

 100s, 1000s, 500k, 1M per sample- STRs and SNPs for one-to-one matching
- Ancestry markers (X, Y, mito, autosomal)
- Phenotypic markers (eye color, hair color, etc)
- Kinship (linked and unlinked markers)
- Other

Mitigate costs by multiplexing samples and sequencing forensically relevant information

- If possible, avoid disease related markers

Points of discussion

- The range of applications that are envisioned for human DNA sequencing within your organization
- Technical considerations/limitations for application of NextGenerations sequencing to your problems that may be unique to your organization
- Your programmatic plans for developing and implementing this technology including past and current investments as well as timelines for making future investments
- Policy implications that you anticipate from the expansion of human DNA analysis for your intended applications
- Plans and/or issues associated with human genomic data archiving, analysis, and curation.
- Your organization's position on the privacy and security issues related to your envisioned use of human genomic sequence information and your vision and approach for addressing these issues

Questions?
peter.vallone@nist.gov
DNA Biometrics Team Leader
Biochemical Science Division
National Institute of Standards and Technology
Gaithersburg, MD 20899
301-975-4872

Acknowledgments
Margaret Kline and Becky Hill

[^0]: DP, discrimination power; H_{e}, expected heterozygosity; H_{o}, observed heter

