

Biopharmaceutical Manufacturing Technology: Vision for the Future

Jim Thomas, Vice President
Process & Product Development

Biotech has a rich history and bright future

...our industry is changing rapidly

- More competitive business environment
- More challenging reimbursement environment
- More conservative regulatory environment

AMGEN

The molecules of biotechnology are complex

Small Molecules

Organic Chemistry

Proteins (including therapeutic antibodies)

Biochemistry
Recombinant DNA Technology

Many patients have been served due to advances in biopharmaceutical manufacturing

...but biopharmaceutical manufacturing is a very complex and expensive business

AMGEN

Opportunity for measurements and standards in the future manufacturing of biotherapeutics

The Molecule

Challenges and Trends in Measurement

Heterogeneity can be influenced by the manufacturing process

Product variants from upstream (cell culture) processing

Challenges and trends in measuring protein therapeutics

- Greater sensitivity, more specificity
 - Peak profile (i.e. CEX) does not identify specific chemical changes
 - Move toward more informative assays
- Elimination of subjectivity
 - Visual inspection- presence of particles, color
 - Move toward automated instrument-based inspection
- Focus on Critical Quality Attributes (CQA)
 - Move toward knowing the specific chemical change and the site of modification
 - Move toward understanding the biological importance of chemical changes

Trends in analytical tools

- Measuring host cell protein
- Measuring molecule fragmentation
- Measuring protein microheterogeneity

Trends in mass spectrometer (MS) sensitivity*

Year	Detection	limit of	peptide ((pmol)	
i C ai	Detection		peptide ((Pillol)	,

1990 100

1993 10

1997 1

2000 0.1

2003 0.01

2005 0.001

2008 0.0001

^{*} typical industrial laboratory

Proteins can form aggregates or particles

Dissociable Dimer

Non Dissociable Aggregate

Visible Protein Particles

Non Dissociable Dimer

Subvisible Particles

Visible Extraneous Particles

Measuring protein aggregation/particulation

Potency measurements

Developing the Manufacturing Process

AMGEN

How will biotherapeutics be manufactured in the future?

- Transgenic animals
- Transgenic plants
- Cell free systems
- Cell based systems

The Host Cell

Mammalian Cells: Core Manufacturing Technology

MOLECULAR CELL BIOLOGY 2ed by Lodish et al. (c) 1990 by Scientific American Books. Used with permission by W.H. Freeman and Company. Illustration by Tomo Narashioma

Isolating the best cell clones is challenging and time consuming

Greater productivity requires improved fundamental scientific understanding

Mapping the design space of critical unit operations is a significant challenge

...but will be important for building quality into the manufacturing process

- Response surfaces represent titer
- Green dots represent conditions confirmed in 2L bioreactors

High throughput process development is needed

5 incubators
Temp. CO2, O2. Humidity, Mixing
1260 mini-reactors

8 sources for liquid addition (± 1.5ul)
pH control (< ± 0.1)
OD measurement
Integrated database
Link to other systems
TECAN, Guava etc.

...including high throughput purification development

High throughput analytics are needed to support real time data acquisition and analysis

1 Wash Detection 10 2 Destain 9 Injection Separation Channel 8 4 5 6 7 Marker Gel-Dye Destain

Examples of implemented HT assays:

- Titer
- Aggregate
- High mannose
- Amino acid analysis
- CHOP Elisa

The Manufacturing Operation

Process Design
Plant Design
Measuring the Environment
Quality of Raw Materials

Manufacturing operations will be more efficient in the future

- Higher yielding processes
- Greater plant flexibility
- Better utilization of capital
- Significant reduction in operating costs

AMGEN

Holistic approach to optimization

The manufacturing operation - opportunities for measurements and standards

Process Design

Productivity and Quality

Upstream parameters for potential measurement and control

- O₂, CO₂, pH, temperature
- Nutrient composition
- Depletion of nutrients
 - Metabolic byproducts
 - Amino acids
 - Carbohydrates
- Cell mass, cell number, cell viability
- Product titre
- Product quality
 - Aggregation
 - Clipped species
 - Glycosylation

Examples of monitoring and control points

Opportunities for monitoring and control

Plant Design

Trends in manufacturing plant design

Flexibility

for optimizing plant capacity

Capital Cost

- engineering construction
- materials

Operating Cost

- utilities
- maintenance
- environmental control/monitoring

Plug 'n Play concept assembly

Assembly

Taps off the headers and connections to the skids would be made only as needed for each specific skid requirement
 Removable wall panels allow skid replacement

Degree of Integration

Modular pre-fabrication approaches

Comprehensive Prefab

integrated prefab structure / facility / process

integrated pre-fab facility within a stick-built structure

 prefab assemblies for insertion in stick-built structure and facility

Disposable technology could improve plant utilization and decrease utility cost

- Top mounted magnetic-drive agitator
- Disposable optical pH and DO sensors
- Sparge, overlay, and exhaust filter lines
- Weldable media addition and sample lines
- Fully customizable bag design
- Touch screen PLC controller
- Movable platform skid

Measuring the Environment

Mycoplasma Bacteria Viruses

High throughput methods for detecting microbes will improve environmental control

- Detects all infectious threat agents
 - Bacteria, mycoplasma, viruses, fungi, protozoa
- Resolves mixtures of organisms
- Quantitative
- Sub-species resolution (strain genotyping)

Universal Pathogen Detector

Contamination turn-around time

^{*} Assumes a detection assay exists for the contaminant

Quality of Raw Materials

^{**}Best case scenario. Some reports indicate over a year's time investigation without definitive identification (finally identified using the universal pathogen detector)

Distribution of chemical classes for raw materials in upstream cell culture

¹H and ¹³C NMR cover all chemical classes except inorganics

Riboflavin

 ¹H NMR spectrum of riboflavin lot # 0010011629. Asterisks denote impurity peaks.

Riboflavin

 ¹H NMR spectral comparison between riboflavin lot # 0010011629 and USP reference standard lot# N0C021

Technological opportunities for improving the future of biotherapeutic manufacturing

- Quick assessment of chemical modifications and their biological relevance
- Merging of characterization, release and online product quality assays to deliver PAT
- Improve measurements associated with creating and quickly selecting high expressing clones
- High throughput tools for process development and formulation development that function as scale down models
- More continuous upstream and downstream processing with associated measurements and controls
- Standard high throughput methods for measuring microbes
- Powerful analytical tools and shared standards for assuring the quality of raw materials.

Acknowledgments

Izydor Apostol Analytical & Formulation Sciences

Thomas Arroll Cellular Resources

Pavel Bondarenko Formulation & Analytical Resources

Houman Dehghani Cellular Resources

Greg Flynn Analytical & Formulation Sciences
Andy Goetze Analytical & Formulation Sciences
Drew Kelner Analytical & Formulation Sciences

Brent Kendrick Analytical Sciences

Duncan Low Process Development

Jeff McGrew Cell Sciences & Technology

Linda Narhi Formulation & Analytical Resources
Timothy Osslund Analytical & Formulation Sciences
Suresh Vunuum Purification Process Development
Siowfong Wee Analytical & Formulation Sciences
Zhongqi Zhang Formulation & Analytical Resources

