Key Concepts

- Current state-of-the-art benchmarking research are not yet mature enough to benchmark big data analytics.
- New benchmarks should consider new technologies, new architectural platforms, new algorithms, and new computing scenarios.
Aspects of Algorithm Benchmarking

- Performance accuracy
- Time, space and resources used
- Speed-up: change as infrastructure grows
- Scale-up: change as data size grows
- Performance accuracy vs. resource cost tradeoff
- Algorithm security (can we trust running it?)
- Method of algorithm execution
- How general is the algorithm?
Benchmarks on the Cloud

- Software non-local, or on others’ infrastructure
- Can’t control the infrastructure
- Software: centralized or distributed?
- HPC benchmarking ≠ cloud benchmarking
 - Cloud is distributed (low-speed network)
 - Cloud uses local disks, distributed file system
 - Cloud uses lots of small nodes
- Benchmarks should be effective on lots of platform
New Scenario: Containers

- Baremetal, VM, Docker, etc.
- Security issues of OS can impact containers
- Containers need to be dynamically created and destroyed to support scalability
- Want to spawn many containers on a node, but how many are possible?
- Quantify container overhead: benchmark same program in different containers
Comparisons can be misleading
 - Example: “Spark is 100X faster than Hadoop”

Must benchmark data migration: include time to put data “in place”

Same issues in GPU benchmarking

Caching should not be optimized for specific programs or program executions

Code owners can optimize their systems