Measurement Science for Complex Information Systems

Project Web Page is http://www.nist.gov/itl/antd/emergent behavior.cfm
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F. Hunt & D. Genin (math), S. Ressler (infoviz)

image generated with http://www.wordle.net/ applied to contents of a paper entitled “Sensitivity Analysis of Koala: an Infrastructure Cloud Simulator” written by Mills, Filliben and Dabrowski

What are complex systems?

Large collections of interconnected components whose
Interactions lead to macroscopic behaviors

— Biological systems (e.g., slime molds, ant colonies, embryos)

— Physical systems (e.g., earthquakes, avalanches, forest fires)

— Social systems (e.g., transportation networks, cities, economies)

— Information systems (e.g., Internet, Web services, compute grids)

What is the new idea?

Leverage models and mathematics from the physical sciences to define a
systematic method to measure, understand and control macroscopic

"We can capture lots of data,
but we can't always make sense of it."

David Alan Grier, computer science professor at George Washington University,
“Investing in Ignorance”, Computer Magazine, Dec. 2010, page 15.

Measurement science is about determining
what data to capture and under what conditions
so that we can make sense of it.

What is the problem??

No one understands how to measure, predict or control
macroscopic behavior in complex information systems

“[Despite] society’s profound dependence on networks, fundamental
knowledge about them is primitive. ... [G]lobal communication ...
networks have quite advanced technological implementations but
their behavior under stress still cannot be predicted reliably.... There
IS no science today that offers the fundamental knowledge necessary
to design large complex networks [so] that their behaviors can be
predicted prior to building them.”

— Network Science, NRC report released in 2006
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Hard Issues & Approaches Investigated

Hard Issues Solutions Investigated and Evaluated

* Model restriction and parameter clustering (leading to MesoNet and Koala)
* 2-level experiment designs

* Orthogonal fractional factorial (OFF) experiment designs

* Markov chains

1. Model Scale

behavior in large distributed information systems, such as
the Internet and computational clouds and grids

Technical Approach

Evaluate models and analysis methods
— Are they computationally tractable?
— Can they reveal macroscopic behavior?
— Can they establish causality?

Evaluate distributed control techniques

— Internet = ;; &

_ Can economic mechanisms elicit desired behaviors?

— Can biologically inspired mechanisms organize
elements?

— Can heuristics allocate resources efficiently?

2. Model Validation

* Sensitivity analysis
* Key comparisons with empirical results in small topologies
* Generating Markov chain models from discrete-event simulations

3. Tractable Analysis

* Correlation analysis with clustering

* Principal components analysis

* 10-step graphical analysis

* Cluster analysis

* Custom multidimensional visualizations

* Exploratory interactive multidimensional visualization
* Eigenanalysis of matrices

4. Causal Analysis

* Principal components analysis

* Detailed measurements of model behavior

* Time series analysis

* Hypothesis testing

* Exploratory analyses

* Cut set analysis of graphs and perturbation of Markov chain models

5. Controlling Behavior

* Economic algorithms for resource allocation in computational grids
* Proposed Internet congestion control algorithms
* Heuristics for resource allocation in infrastructure clouds




Sensitivity Analysis of Koala: an Infrastructure Cloud Simulator

K. Mills, J. Filliben, C. Dabrowski
and S. Ressler
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image generated with http://www.wordle.net/ applied to source code for Koala Cloud Simulator created by Mills and Dabrowski

Schematic of Koala 1aaS Cloud Computing Model
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Correlation Analysis & Clustering (CAC) Reduces Dimensionality

We identified an 8-dimensional response space within the 40 responses

Response SA1-small SA1-large SA2-small SA2-large
Compute correlation coefﬁcient Dimension (9 dimensions) (8 dimensions) (10 dimensions) (9 dimensions)
. y1, y2, y3, y5, | y1,y2, y3, y5, 1 V2 v3 vs 1 v2 v3 v5
(r) for all response pairs Cloud-wide Y6, y8,y9,y10, | y6,y7,y8,y9, y6,y8 ’g ’{0’ yybyygyyg'
Demand/Supply | Y13, ¥23,y24, | y10,y13,y23, | Y2 ¥ Y5V %
. ... Ratio y25,y29,y30, | y34,y25y29, | YVILVIZVISG | y23, y2,
Examine frequency distribution y32,y34,y36, | y30,y32,y33, | V1B IENES | y25, y38
. y38 y34, y36, y38 ’
forall |r| to deter.mlne . Cloud-wide yIO.y1,y12 | y10.y11,y12 | 10 oy g y10,y11,
threshold for correlation pairs 5‘;:;:”9 y13,y14, Y15 | y13,y14, 15 | 7 )13, 14, y15 | V1% ;}/,11:'; y14,
to retain; |r| > 0.65, here v16, y18, y19,
y19y29, yel, | y19.y2s y21, y 19,y20, y21
Cluster Load Y 19,y20, y21,
Create clusters of mutually uster Loa V26, y27 V26, y27 Y17 e, )26, y27
correlated pairs; each cluster util)
. . 14, y15, y30,
represents one dimension 3 yizy1ay15, |~ 3y1 ,
Mix of VM y34, Y 5 ws) 31 y30, y31, y33, Yo, y33
Types y (MS) 34. v35 36 y34, y35
Select one response from each v31 ms) v34,y35 Y30 I ¥36 (s)
cluster to represent the Number of VMs | 29, 37 y37 y29, Y37 y29
dimension; we selected Roer Arrival y4 y4 y4 y4, ys7
response with largest mean Reallocation Y722 7 y22 V7 (cluster) 7 y22
. . » Y y7/, Y7,
correlation that was not in Rate V22 (node)
* Variance in
another cluster Choice of y28 y28 y28 y28

*Not possible for cloud-wide resource usage in SA2-small, so we selected response with highest mean correlation.

Most significant parameters determined through MEA
of the responses selected using CAC

We computed percent of responses influenced (V) for each parameter,
weighting p < 0.05 at 2and p< 0.01 at 1:

¥Y=(wlp<0.013+"%[y|p<0.05;)/ ]y} x 100

Computed average Y for each parameter, weighting experiment ¥ by number of repetitions

Input Parameter

Experiment Weight | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11
SA1 small 6/14 1 |57 |22 |11 (44 | 29 (30 (12| O 1 0
SA1 large 114 0 |69 13 |25 |44 | 56 (31 | 25| 0 | 13 0
SA2 small 6/14 2 (7338|1045 | 62 |10 |17 | 1 0 0
SA2 large 1/14 0 |56 50 |11 (39|56 | 6 11| 0 0 0

Avg. ¥ Est. 1 |65 |30 |12 (44 | 47 (20 |15 | O 1 0

green = major influence; yellow = modest influence; orange = minor influence; gray = no influence

Most significant parameters: x2 (# users), x5 (# clusters), and x6 (# nodes/cluster)
Moderately influential parameters: x3 (user types) and x7 (platform types)
Somewhat influential parameters: x4 (user hold time) and x8 (cluster-selection algorithm)

No influence : x1 (measurement interval), x9 (node-selection algorithm),
x10 (geo-distribution of cloud components), and x11 (packet loss prob.)

Synopsis

Problem: Resource allocation in on-demand Clouds can be formulated as
an on-line bin packing problem, where algorithms cannot always
achieve optimality, implying algorithms will be heuristics.

Objective: We are applying our methods to compare 18 resource
allocation heuristics for on-demand infrastructure Clouds.

restricting and grouping

(2)

clustering

(3)

experiment designs

First steps (describing today):
(1) Formulate Koala, a reduced scale model created by identifying,

parameters

|Identify essential Koala behaviors by applying correlation analysis and

Identify Koala parameters that significantly influence essential
behaviors by applying 2-Level orthogonal fractional factorial (OFF)

Next steps (ongoing): (1) Apply 2-Level OFF design again to create comparison
conditions, (2) Simulate each heuristic under created conditions, and (3) Apply
multidimensional analysis techniques to identify significant patterns and causality

2-Level OFF Experiment Designs Reduce # of Parameter Combinations, While
Improving Global Coverage and Minimizing Error in Effect Estimates in comparison
with comparable Factor-at-a-Time (FAT) Designs

We selected two pairs of level settings (SA1 & SA2) and two system sizes (small & large)
SA1-small and SA1-large

SA2-small and SA2-large

Ad d 2 L I Parameter Plus Level Minus Level Plus Level Minus Level
Opte -Leve x1 1200 hours 600 hours 1600 hours 200 hours
11-5\ « . ” 500 (SA1-small) 250 (SA1-small) 750 (SA2-small) 125 (SA2-small)
(21) “Resolution IV x2 5000 (SA1-large) | 2500 (SA1-large) | 7500 (SA2-large) | 1250 (SA2-large)
OFF experiment design, o2
requiring 64 simulations SR oy 023
. WS1 =015 PU1=1/6 PU1=0.4 WS3 = 0.1
per experiment WS2 = 0.07 PU2 = 1/6, PU2=0.4 PS1 = 035
e WS1 =1/6 PU3 =0.1 e
x3 WS3 =0.03 - _ PS2 = 0.04
_ MS1 = 1/6 PU4 = 0.05 -
PS1=01 PS1=1/6 PU5 = 0.025 PS3=0.01
PS2 = 0.01 - by DS1=0.08
i MS1 = 0.1 DS1=1/6 PU6 = 0.025 DS2 = 0.015
Instantiated 4 MS3 =0.01 DS3 = 0.005
designs, and simulated Do oae
i+ i x4 8 hours (a=1.2) | 4hours (a=1.2) | 12 hours (a=1.2) | 2 hours (a =1.2)
6 repet|t|0n5 (d Iffe rent x5 20 (SA1-small) 10 (SA1-small) 30 (SA2-small) 5 (SA2-small)
random number seed S) 40 (SA1-large) 20 (SA1-large) 40 (SA2-large) 10 (SA2-large)
. . X6 200 (SA1-small) 100 (SA1-small) 400 (SA2-small) 50 (SA2-small)
with the 2 smaller designs 1000 (SA1-large) | 500 (SA1-large) | 1500 (SA2-large) | 250 (SA2-large)
C2=0.1
- C4=0.1
C8=0.25 piabe C6=0.1
X7 c22=1.0 c14=025 C18=0.2 c8=0.1
Required C18=0.25 020 = 0.2 C10=0.1
C22=0.25 092 = 0.2 C12=0.1
(6x2+2)x64=2896 ' el
1 1 x8 Percent Least-Full First Percent Least-Full First
simu Iatlons Allocated Allocated
x9 Next-Fit First-Fit Next-Fit First-Fit
x10 4 1 8 1
x11 10°to 10°® 10*to 10° 102 to 107 10°to 107

Main Effects Analysis (MEA) Identifies Significant Influence of Input
Parameters on Response Variables

We applied MEA to response variables selected using CAC —
this example is y15 (NIC Count Load) for experiment SA1-small
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Ongoing Work

Currently conducting an experiment to compare 18 resource
allocation heuristics for on-demand laaS Clouds

Experiment design is “Resolution V
2°1 OFF, requiring simulating each of the
18 heuristics under 32 conditions (i.e., 576

total simulations)

III

Simulations are completed, data collected
and summarized. Data analysis ongoing.

Cluster Node
Selection Selection
Least Full First Fit

First Next Fit
Percent Tag & Pack
Allocated Random
Least Full
First
Random
Most Full
First
3 X 6 = 18



IDENTIFY FAILURE SCENARIOS IN CLOUD State Model of Resource Request in Cloud
SYSTEMS USING MARKOV CHAIN ANALYSIS

Chris Dabrowski and Fern Hunt A detailed representation of states that a cloud system (Koala) may enter
under normal and failure conditions, shown for two five major phases.

e~ High-Level Model of
o Phases of Request Lifecycle
Initial - g Failed_State

5
- 2
] g &
0
% % G5 %9 %5 ‘o Stat
Increase in Probability of Transition from Allocating_Minimum ate
state (8) to Transferring_Failure_Estimate state (10)

Detailed State Models of Two Phases

(7
[Transferring_Estimate_Req uest]

TIMEOUT

e R R T oy ; _sew
Problem: |dentifying failure scenarios in distributed systems such as clouds — Fragarng To S ST A o S0
s critical to understanding areas where performance may degrade. However, bees (et i) (Trnsforig e, Esinele =555
potential failure scenarios may be numerous and difficult to find.
Objective: To perturb Discrete Time Markov Chains (DTMCs) of cloud (el Procesirg — <>] -
system behavior to identify potential failure scenarios more quickly than e e
through detailed large-scale simulation or use of test beds. S S B —
Steps (describing today): St o m(";
(1) Using Koala as proxy for real-world cloud, develop detailed state model tono { Allocating Request) (Transterting_Alocaton Estimte) ™
of cloud behavior and convert to time-inhomogeneous DTMC. e - I . N
(2) Find minimal s-t cut sets in a directed graph of cloud DTMC to identify (Seecing Next_Chser) -, —(Sleoion_Falig
critical state transitions that break paths to desirable system goal states. G (Implemeniing Alocaton (FP) @ransfemng_pai.%f?ipilfl]
(3) Perturb critical state transitions to describe potential failure scenarios, e eI Reau s F)
create predictive performance curves, and find performance thresholds. [Request_Granted (F/P)

<o,
2,
Ol <
X
S
)

Using the DTMC to simulate large-scale
system (Koala) behavior

Creating a Discrete Time Markov Chain

« Observe Koala (as proxy for real-world system) to derive set of « Markov chains can emulate Koala to capture high-level system
transition probability matrices (TPMs) that describe probabilities of behavior, but in two orders of magnitude less computational time.
transition between states over different time periods =>forms a time- .y . Total Grants
) To evolve system state in discrete time steps, )
mhomogeneous DTMC. multiply state vector v,, (at time step m) by the oo

. . TPM, QP, for the applicable time period tp to § 4 /Z
d Generated1 OOO tlme perIOd TPMS Of 3600 S eaCh- produce a new System State Vector Vm+1’ ..:é 0:6 //
oP)r *v,=v, ., where tp = integral value (m/S) + 1 gf o //
Given states s;, s;, i,j = 1...n where n=39, p;, is the where T indicates a matrix transpose. § T /| arants (Mancoy simutation
flj probability of transitioning from state i to state j, written v v o1 1 fotelrants (targerscate simulation)
p,-j — " as s; 2 s;. This probability is estimated by calculating the " i o v % T T T T T T T
Zk—l ﬁk frequency of s; 2 s;, or f;, divided by the sum of the = = Time Step
B frequencies of s; to all other states. = ==
= = Full and Partial Grants
8 | 9 | 10 X - = z os
8|Allocating_Minimum 0 0.264 | 0.736 g ; 'i?;z
4> 9| Allocating Maximum 0 0 £ ; ; .;éozs //
10|Transferring Failure_Estimate 0 0 £ E E ‘g' > — Full Grant (Markov simulation)
; E go:j / '_,—" Full Grant (Large-scale simulation)
=] = 30.05 / ____________ - i:arja:zrant:E/Iarkovsilmunlaticint)- )
Repeated for 576 time steps in 16 hour 0 — J} Ssmg
simulated period, one time period per hour. 7 e e T e T e e T T e T

Using minimal s-t cut set analysis
to find potential failure scenarios

Perturbing state transitions in a cut set to
predict system behavior in failure scenario (1)

High-Level Model

. Detailed Model of . = 10 03
of Request Lifecycle z ad A ak o, <
In a dlreCted graph Of the Koala Cluster Estlmatlng Phase s 1 _——_—— y [AIIocating_Minimumj(S) (TransferringI_FanL}e_EstiIrIgt)e] g ZZ S — 025 §
DTMC, minimal s-t cut sets Initial 1o | o :
. iy | (8) ! () (0 State | R . 0%
ConSISt Of Crltlcal State AIIocating_Minimum [Transferring_Fai|ure_Estimate} - —_— - Cut set E 0:5 A\ 015%
tl'anSItIOI?S, WhICh If removed, Cut set [Pregaring To Sugmit] ©) #1 -4 g 0.4 ’7:)ecre‘a”s’e in ;?rob::’)'ilt.yoftransiti(osr; \\ | o4 g
disconnect a” paths to absorbing #1 _4 /l [AIIocating_Maximum] % 0:2 77toAIIocating_Maximumstate(9) \\A . .g
Requests_Granted (F/P) state. © il Provessi " | é
A ql _ _I " ( ] ) cut t[Anocaﬁng_Maximumj%CAuocaﬁnjg_pama. . (i Procesro) « Cut set #1-4 could relate to a scenario in R s s o o t
utset, — 1 — — _ _ _ — _—— — . : £ ST Y
PPVINg Blgorih o I s e A i (Cusor g which software or hardware failures make | e sosiyor o tan slceng wimun
minimal s-t cut sets to the Koala o | resource databases inaccessible, preventing ot s (s
DTMC resuI]:ted In 159 cut sets. | (Alocating Requsst) clusters from computing minimum allocation (6Tt Grats(arge Sale Smultion
Examples of one and two- o I estimates. Instead, clusters return failure
tranSItlon CUt Sets are Shown [Transferring_AIIocation_Einmate} [Implementing AIIocatiorAF/P)} eStImateS IIO the CIOUd COHtFOIIer DeCIIne in tOtaI requeStS granted (FUII and Partial) due
Both cut sets disconnect all paths = to cluster estimation failure:
from Initial State to Request _Granted (Tt (a) As estimated by perturbing the DTMC; and
(FIP) absorbing states. P — | (b) As computed in Koala large-scale simulation.
B - | BeauestGrnEd FR) | Portions of TPM perturbed
One-transition cut sets Two-transition cut sets | Absorbing | 3 9 | 10 Blue curves show the resulting decrease in requests
Set of member Total Set of member Number of |Total “ _St_attf _ 3l Allocating Mini 0 0248‘, 0752f granted as estimated using the DTMC and as actually
transitions from Fig. 3 |Probabilty transitions from Fig. 3 |From States |Probabilty = Ing‘ |n|I11um 5 '0 : occurred in the Koala ‘large-scale simulation. These
1-1 11,2} 0.001 71 {14, 17} {14, 18} 1 0.895 9|Allocating_Maximurn : curves are plotted against the left vertical axis. The
1-2 {2, 3} 0.025 2-2 {9, 11} {9, 12} 1 1.000 10|Transferring Failure_Estimate 0 0 € right vertical axis provides units for the decrease in
1-3 S 0.124 2-3 {9, 12} {11, 12} 2 1.395 - Raise probabiltiy of Allocating_Minimum = probability of the state transition.
1-4 i8, 9} L N [ O [ S Transferring_Failure_Estimate:TPM element {8, 10}
""""""""""" 223 133, 35} {34, 36} 2 2.000 « Lower probablity of Allocating_Minimum ->
1-10 112, 13} 1.000 *Provan S., and Ball M., 1984, “Computing Network Reliability in Time

e . Allocating_Maximum: TPM elements {8, 9}.
Polynomial in the Number of Cuts,” Operations Research, 32(3), pp. 516-526. -

Perturbing state transitions in a cut set to

predict system behavior in failure scenario (2) Ongoing Work

| ®) V() o)
Allocating_Mini i i i i ili iti i . TE
Comtaiiomn) - Cembrie e Sinae) o st 510 Alocain. P st (1. Apply methodology to larger problems and determine scalability
% % %% %, %% %, 9 %, % % %% g
1.0 s . . 4 : : : t : 4 - + 1.0
0.9 ‘\*\ A2 4 4 N S : . g
© o e ™ * Current model consists of 39 states and 139 transitions
[Allocating_Maximum]% Allocating_Partial (1) 0.7 \\\ from Allocating_Partial state (11) to 0.7
Cut Set e \\\ Recording_Allocation state (12). b

* |ncludes user, cloud controller, and cluster behavior, but not
node behavior or actual use of VMs

0.5 S 0.5

#2-3 | Aavan T oA 1

[Recording_AIIocationJ

0.4 S 0.4

Ss 0.3

0.3 Decrease in probability of
2 transition from Allocating_Maximum
state (9) to Recording_Allocation (12) state.

{+ 0.2

Decrease in Probabilities of Transition

0.1

o
=

Cut set #2-3 could relate to a failure scenario in

0.0

A 0.0

I
I
I
I
I
I
I
I
I
L
Proportion of Requests Granted (both Full and Partial)
o

WhICh Vlruses Or Other faUItS Cause Wldespread Qoloncrei::einQ:T'obaOZIOIityZ?Tra:zoitio:iorom:)olloc:;ong :?niajoo Apply meth0d0|ogy to dlfferent types Of fallure Scenarlos
SOftware process failures in Clusters’ WhiCh state (11) to Transferring_Failure_Estimate state (10).
prevent completion of cluster allocation o e e s—
estimation computations. Instead, clusters
return failure estimates to the controller. Decline in total requests granted (Full and Partial) due _ _ . _ o
to cluster estimation failure: For more information, see: Identifying Failure Scenarios in Complex
. a) As estimated by perturbing the DTMC; and . . . .
Portions of TPM perturbed (o) e compated by Foralm 1oroe soale siuation. Systems by Perturbing Markov Chain Models ,by Christopher Dabrowski
—— DT | | and Fern Hunt , submitted to ASME 2011 PVPD Conference
9|Allocating_Maximum 0 | e | odsd osiy Blue curves show the resulting decrease in requests
10| Transferring Failure_Estimate 0 | & | 000 000 granted as estimated using the DTMC and as actually
11 Allocating Partial 0 | ¢4 oow | 13e§ occurred in the Koala large-scale simulation. These
12|Recording_Allocation 0 € | 0000 | 0000 curves are plotted against the left vertical axis. The
*Raise Allocating  Maximum -> Allocating _Partial: TPM element {9, 11} nght vertical axis provides units for the decrease in

*LowerAllocating_Maximum > Recording_ Allocation (TPM element {9, 12}) probability of the state transition

*Raise Allocating _Partial-> Transferring_Failure _Estimate: TPM element {11, 10}
*Lower Allocating_Partial > Recording_Allocation: TPM element {11, 12}




