DEMONSTRATING STANDARDS-BASED DIGITAL THREADS AT SCALE: CURRENT PROGRESS AT DAF MANTECH

WILLIAM “BILL” BERNESTEIN, PHD
TECHNICAL ADVISOR, DIGITAL MANUFACTURING & SUPPLY CHAIN BRANCH
MANUFACTURING AND INDUSTRIAL TECHNOLOGIES DIVISION (AFRL/RXMD)
APRIL 2024
Agenda

• Overview of Dept of the Air Force (DAF) ManTech Advanced Manufacturing Technology (AMT) Portfolio

• Ongoing Efforts Related to Model-Based Enterprise
 • Technical Data Modernization for As-Built Data
 • Open Digital Thread for Industrial Augmented Reality

• Looking Forward

*Created by DALL-E
AFRL/RXM | Manufacturing and Industrial Technologies Division

- Significant opportunity to realize cost savings by engaging with stakeholders early to promote manufacturable designs and ensure the industrial base will be ready to produce
- Responsive to acquisition programs across the development, production and sustainment lifecycle

AFRL/RXM uniquely addresses manufacturing & industrial base challenges
- across manufacturing development lifecycle
- from process conception through full rate production
- across the spectrum of aerospace technology
- for both acquisition and sustainment

Cost Reduction Opportunity

Cumulative % Cost

MRL 1 2 3 4 5 6 7 8 9
Advanced Manufacturing Technologies

Minimize cost and acquisition timelines through pervasive Industry 4.0 technologies lowering barriers between physical and digital assets in the Defense Industrial Base (DIB) and depots

• Decision-Making Agility across Lifecycle
 – Consistent Data Exchange
 – Efficient Commissioning for Manufacturing Assets
 – Governance and Provenance for Sensitive Data

• Responsive and Agile Manufacturing Operations
 – Rapid Turnaround in Depots
 – Weapon System Availability
 – Expanded Process Capability Envelope

• Enabling Pervasive Transition
 – Affordable Technology Insertion of New Processes
 – Robust Robotic Agility in the Depots
 – Open, Modular, Standards-Based Architectures

• Intuitive Human-Machine Cooperation
 – Situation Awareness in Austere Environments
 – Upskilling Operators, Maintainers, and Assemblers

2-10x more efficient DIB operations
Advanced Manufacturing Technologies (AMT) portfolio responds to pervasive Industry 4.0 (or Smart Manufacturing) Investments.

Currently, AMT includes three ManTech programmatic foci:

DIGITAL ENTERPRISE (DE)

Thrusts:
- Digital Twin / Thread / Engineering
- Digital Supply Chain
- Moving Manufacturing Left

Deliverables & Impacts:
- Data governance for distributed manufacturing systems
- Controlled schema capture of supply chain activities
- Model-based consideration for manufacturing
- Templates for modernized technical data packages

Aligned with MxD MII

ADDITIVE MANUFACTURING (AM)

Thrusts:
- Affordability
- Transition Support
- AM at Scale

Deliverables & Impacts:
- Driving affordable processes and materials into practice
- Can print at the scale of critical DAF applications
- AM transitions with the ease of traditional processes

Aligned with America Makes MII

AUTOMATION, ROBOTICS, & MIXED REALITY (ARMR)

Thrusts:
- Robotic Agility
- Robotic Mobility
- Multi-Robot, Multi-Human Teaming
- Advanced Process Visualization

Deliverables & Impacts:
- Robots that adapt to task, work piece, & environmental variability
- Robots that perform manufacturing processes in situ
- Systems of robots and humans that physically collaborate
- Visualization for process interaction

Aligned with ARM MII
Automation, Robotics & Mixed Reality

Manufacturing Vision

DEVELOP, MATURE AND DELIVER AGILE, ADVANCED ROBOTS, XR-ENHANCED SYSTEMS FOR SEAMLESS INTEGRATION WITH DIGITAL DATA, AND SENSOR-BASED ADAPTIVE PROCESS CONTROL THAT WILL DECREASE COST AND IMPROVE MANUFACTURING PROCESSES THAT MEET DAF-SPECIFIC NEEDS

Manufacturing Goals

• **AGILE, ADAPTABLE, REDEPLOYABLE, & FULLY RECONFIGURABLE MULTI-PURPOSE ROBOTS CAPABILITY PILOTED IN PRODUCTION ENVIRONMENT BY 2026**

• **XR-ENHANCED SYSTEMS FOR SEAMLESS INTERACTION WITH ROBOTS, PROCESSES, & DIGITAL DATA PILOTED IN PRODUCTION ENVIRONMENT BY 2027**

• **NATURAL HUMAN-MACHINE COLLABORATION FOR SENSING, COGNITION, & ACTION PILOTED IN PRODUCTION ENVIRONMENT BY 2028**

• **MULTI-AGENT AUTONOMOUS MOBILE ROBOTIC MANIPULATORS WITH SUPERVISED AUTONOMY AND INTELLIGENT TEAMING DEMONSTRATED IN SUSTAINMENT ENVIRONMENT BY 2028; FLIGHT LINE ENVIRONMENT 2029**

• **MANUFACTURING PROCESS INFORMATICS FOR UP- & DOWN-STREAM ADAPTIVE PROCESS CONTROL PILOTED IN PRODUCTION ENVIRONMENT BY (?)**
Digital Enterprise

Manufacturing Vision

A highly connected, digitally-enabled acquisition and sustainment enterprise with impacts to downstream manufacturing activities fully characterized as early as possible.

Manufacturing Goals

Development, adaptation, and transition of digital technologies to improve manufacturing enterprise processes to transform connections to and from other parts of the lifecycle.

- Demonstrate 50% reduction in “time to market” for defense products
- Increased participation in Defense marketplace for SMMs
- Greater efficiency and resiliency in production supply chains
- 10X increase in manufacturing decisions supported by simulation
Open Digital Thread / Twin

Manufacturing Vision

Advance “open” technologies to form “baseline” DIG TWIN/THREAD TOOLS/STANDARDS FOR MANUFACTURING, INCREASING INTEGRATION BETWEEN AF, SUPPLIERS, AND EXISTING DIGITAL THREAD/TWIN SOLUTIONS TO SUPPORT ENGINEERING, MANUFACTURING, AND LOGISTICS ANALYSES ACROSS THE LIFE CYCLE

Manufacturing Goals

- Reduce time (~10x) it takes to verify technical requirements, specs, and physical parts
- Reduce time (~10x) it takes to resolve incident reports by having traceability throughout manufacturing process
- Predict and recommend solutions to quality issues for systems and subsystems. Improve quality X%
Digital Enterprise ManTech Program

 Enterprise-level Data Architectures

 Engineering Data Interoperability

 Sustainment Modernization

 Adaptive Quality Management

 AM Process Qualification

 Large Scale Metal AM

 New Materials

 Additive Manufacturing ManTech Program

 Digital Enterprise ManTech Program

 LEVERAGE

 LEAD / PARTNER

 WATCH

 Automation, Robotics, and Mixed Reality ManTech Program

 Communication Protocols

 Mfg Process Informatics

 Mfg System Integration

 Machine-Machine Teaming

 Robotic-Assisted Repair

 Metamorphic Manufacturing

 Automated Material Handling

 Joint Cognition

 Enterprise-level Data Architectures

 Engineering Data Interoperability

 Sustainment Modernization

 Adaptive Quality Management

 AM Process Qualification

 Large Scale Metal AM

 New Materials

 Additive Manufacturing ManTech Program

 LEVERAGE

 LEAD / PARTNER

 WATCH
Technical Data Modernization for As-Built Data
Information Complexities Across the Product System Lifecycle

Industry 4.0 Standards Activities

Challenge:
Harmonizing Industry 4.0 standards at scale

Use Cases of (Particular) Interest

Full-Sized Determinant Assembly (FSDA)

Failure Analysis at Sustainment

Acquisition Support / Data Rights
Vision | Technical Data Modernization for As-Built Data

As-Designed	As-Planned	As-Executed	As-Inspected
STEP AP242 | G-code | MTConnect | QIF
.slp, .step | .txt | .xml | .xml

Enables

Integrated Knowledge Base

Translation

Product lifecycle

STEP Files

STEP-QIF Mapping Spec.

QIF Files

STEP Knowledge Graphs

QIF Knowledge Graphs

Integrated Knowledge Base

Linking (SWRL)

Querying (SQWRL)

Designer

Inspector
(NEW!) Project: Technical Data Modernization for As-Built Data

- MBE standards have reached adequate maturity to warrant large-scale testing via demonstrations
- DAF-relevant assembly and sustainment activities would benefit from better data exchange practices
- DAF acquisition service requires guidance in how/what data to purchase up-front
- Two use cases:
 - Project 1: Advanced data linking of part/assembly as-built data to facilitate shim-less assembly
 - Project 2: Better data curation for non-destructive inspection (NDI) in sustainment
Open Digital Thread for Industrial Augmented Reality
How interoperability will impact Industrial Augmented Reality

Potential research and development opportunities for Industrial XR related to data-driven processes

1 Bernstein et al. (2024) ASME JCISE.
Industrial AR suffers from interoperability challenges

Real-world capture → Domain-specific models → XR scene presentation

- Devices
- People
- Spaces
- Plans
- Materials

Lockheed Martin – Partner in FY22 AFRL RXM Discovery Award
Emergent Visualization and Operations Software (EVOS) Team
(photograph approved for public release by LMCO)
Current solutions for Industrial AR development

Platform Lock-in

Rely on 3rd Party Translators

Digital Enterprise / CAx Standards

CAx – Computer Aided "X" Software
Quality Control, Quality Assurance Companion (QQComp)

DoD Problem
- Inspection of complex systems is expensive (training, travel, expert personnel).
- Extended Reality (XR) improves efficiency for inspection. However, they suffer from a lack of interoperability between PLM systems and visualization modalities, e.g., headsets.
- Current technical data package (TDP) practices do not lend themselves to low-level mappings between authoritative design data and inspection reports.
- COTS toolkits do not adequately address automated instruction delivery.
- DoD depots and industrial base procure one-off XR apps, lacking scalability and agility.

Approach
- Collaboration between DoD labs to create end-to-end, platform-agnostic, standards-based pipeline for presenting product manufacturing information (PMI) on 3D mesh models with a DoD-developed computer vision toolkit for automated work instruction delivery.
- Leverage NIST open-source software, e.g., STP2OWL, STP2X3D, STP-QIF integration
- Develop graph database schema to store standardized data, e.g., inspection and design.

Warfighter Benefits/Impacts
- Represents a collaboration across 4 DoD services, leveraging funds from OSD, OUSD, DLA, ERDC, AFRL, and NIST, with 7 support letters and 9 potential transitional partners: DLA, NAVSEA, NAVWAR, Warner Robins ALC, PEO Aviation, AFRL Rapid Sustainment Office, Pier Side Support Equipment, Strategic Systems Programs, and Missile Defense Agency
- Reduces time (-66%), human errors (-70%), and cost (-30%) for inspection and maintenance activities
- Government developed open-source software can be reused and shared by the larger community. QQComp has unlimited data rights to its deliverables.
- Implementing an end-to-end pipeline in the manufacturing process helps unify the process from product design through manufacturing to quality inspection translating into time and money savings.
- Broad collaboration builds relationships to best leverage XR-related R&D
Goals of QQComp – Build Authoritative Models for AR

Goal 1. Develop computer vision (CV) module to support instructional guide authoring for XR applications
- Define inspection and maintenance procedures in machine-readable format
- Develop CV toolkit for object recognition and view segmentation
- Relate CV module to XR-assisted inspection/maintenance app

Task 1: Computer Vision Toolkit on Cloud
Demo: Automated XR presentation of instruction for inspection activity

Goal 2. Enrich mesh representation w/ semantic Product Manufacturing Information (PMI) through knowledge graphs
- Leverage open-source translators, e.g., NIST STP2X3D Translator
- Improve and harden translators beyond NIST publications
- Collect and use DoD use cases

Task 2: Mesh model w/ PMI on Cloud
Demo: Semi-automated Translation of CAD to XR Model

Goal 3. Relate real-time inspection data to mesh model via QIF on the cloud
- Leverage open-source translators, e.g., XML2OWL Translator
- Build secure cloud-based QIF-compliant database
- Relay outcomes from measurement tools

Task 3: Real-time Inspection Data to Mesh on Cloud
Demo: Automated push of digital micrometer data to QIF database

Goal 4. Demonstrate MRL 7 technology in a production environment
- Package Task 1 and Task 2 in Unity3D application
- Deliver hardware with software running to transition partners
- Test and report on findings

Task 4: Test with Customer and Harden Tech
Demo: Remote update between at least 2 distributed teammates
QQComp Timeline

Goal 1: Develop CV module

- Develop model training pipeline
- Benchmark against COTS tools
- Develop QIF database
- Develop translator for STP model to mesh with PMI
- Develop capability for visualization real-time status of inspection data
- Develop data input tool to support entry of diverse data for authoring
- Develop AR applications per workshop outcomes
- Develop test cloud-based messaging protocol

Goal 2: Build mesh with PMI via KGs

- Improve and support

Goal 3: Relate real-time inspection data to mesh via QIF

- Develop reasoning capability on QIF and glTF graphs to demonstrate semi-automated AR content generation

Goal 4: Demonstrate AR applications in production environments

- Deploy CV module onto cloud

- Improve and support

- Improve and support
Transition Workshop and MVP Demonstrations (07 AUG 2024)
Other Examples of Interoperability-Related Projects for Industrial AR

- **Content reuse/adaptability for animations**
- **Process planning for robot-assisted manufacturing**
Plans Forward – Both ManTech and Internal Research

- Leverage Joint Defense ManTech Panel (JDMTP) Advanced Manufacturing Enterprise (AME) Subpanel to work cross service **technical data modernization**
- DAF ManTech support technical data initiatives and help proliferate best practices across defense industrial base (e.g., low tier suppliers) and **organic industrial base**
- Continue to support and demonstrate manufacturing innovations across technology readiness level (TRL) spectrum

Collaborative Automation for Manufacturing Systems (CAMS) Lab coming soon!
QUESTIONS?

Got use cases?
Please find us at lunch!