CHIPS Digital Twin
Manufacturing USA Institute

February 12, 2024
Today’s Speakers

ERIC FORSYTHE
Technical Director
CHIPS Manufacturing
USA Institute

CAROL HANDWERKER
Head of Technology Strategy
CHIPS Program Office

MOJDEH BAHAR
Associate Director for Innovation and Industry Services
NIST
Disclaimer

• Statements and responses to questions about advanced microelectronics research and development programs in this webinar:
 o Are informational, pre-decisional, and preliminary in nature.
 o Do not constitute a commitment and are not binding on NIST or the Department of Commerce.
 o Are subject in their entirety to any final action by NIST or the Department of Commerce.

• Nothing in this presentation is intended to contradict or supersede the requirements published in any future policy documents or Notices of Funding Opportunity.

Questions about this content?

• Email research@chips.gov
In addition to workforce development, what is the biggest opportunity for digital twin technologies? (Pick 1)
What are the biggest challenges that need to be solved to realize the full potential of digital twins for semiconductor manufacturing? (Pick 2)

① Start presenting to display the poll results on this slide.
What are the additional big challenges to developing digital twin technologies for semiconductor manufacturing?
CHIPS for America

$39 billion for incentives
Two component programs to:
1. Attract large-scale investments in advanced technologies such as leading-edge logic and memory, and advanced packaging
2. Incentivize expansion of manufacturing capacity for mature and other types of semiconductors

$11 billion for R&D
Four integrated programs to:
1. Conduct research and prototyping of advanced semiconductor technology
2. Strengthen semiconductor advanced packaging, assembly, and test
3. Enable advances in measurement science, standards, material characterization, instrumentation, testing, and manufacturing

Plus CHIPS initiatives from other agencies, including DOD, State, NSF, and Treasury
CHIPS R&D Programs

- Metrology
- National Semiconductor Technology Center
- National Advanced Packaging Manufacturing Program
- Manufacturing USA Institute

Workforce Initiatives
Notice of Intent
CHIPS Manufacturing USA Institute

- Establish one institute with the potential for significant impact on semiconductor manufacturing
- Topic: Digital twins
- Minimum expected NIST commitment ~$200 million over a five-year period
- Anticipate a greater than 1:1 cost share
- Analysis of RFI responses, industry feedback, listening sessions across 15+ engagements, and technology opportunities across the CHIPS R&D portfolio.
What is a digital twin?

• A **virtual** representation or model that serves as the real-time digital counterpart of a physical object or process.

• Benefits
 • Innovate faster and at less expense
 • Access feasible for small and medium businesses
 • Enhance training modalities
 • Shorten process design and validation times
 • Improve facility performance

• Challenges
 • Being able to produce and access the **data** needed to validate digital twins and power machine learning and AI tools
 • Strategic industry **collaboration**, which requires a neutral convener to build trust and bring together all parties to share the risks and rewards of working across boundaries
 • Significant **financial investment**, which is out of reach for small and medium-sized manufacturers to do themselves
Selection of Topic

CHIPS Manufacturing USA Institute on digital twins for manufacturing processes

Decision based on inputs from:

- Manufacturing USA – RFI for Semiconductor-Related Manufacturing USA Institutes
- CHIPS R&D Workshops
 - September 2023 Standards Summit
 - December 2023 Chiplet and Digital Twin Standards
- PCAST and CHIPS IAC recommendations
- Stakeholder meetings
Carol Handwerker

Digital Twins to Revolutionize Lab-to-Fab Transitions
Semiconductor Industry Needs

- CHIPS for America Industrial Advisory Committee
- SRC Roadmap for Microelectronics and Advanced Packaging Technologies
- NIST Semiconductor Metrology and Standards Workshops
- IPC Workshop on Advanced Packaging and Roadmap for Industry 4.0
Industrial Advisory Committee Recommendations

Establish five key capabilities aimed to lower the barriers to entry and success for innovators. These capabilities will rely on a network of physical and virtual facilities.

- Establish easily accessible prototyping capabilities in multiple facilities and enact the ability to rapidly try out CMOS+X at a scale that is relevant to industry
- Create a semiverse digital twin
- Establish chiplets ecosystem and 3D heterogeneous integration platform for chiplet innovation and advanced packaging
- Build an accessible platform for chip design and enable new EDA tools that treat 3D (monolithic or stacked) as an intrinsic assumption
- Create a nurturing ecosystem for promising startups
Industrial Advisory Committee Recommendations

Identify a small number of application-driven grand challenges to inspire innovation across the computing stack and spans fundamental materials, equipment and process R&D; design and manufacturing.

• Improve computing energy efficiency by 1,000X in a decade including leveraging domain specific accelerators and architectures, and innovation in materials, process and equipment technologies.
• Develop and implement next-generation semiconductor manufacturing that is 10X more capital and human resource efficient and achieve net zero emissions with minimum waste and demonstrated sustainable materials in the next decade.
• CHIPS Act R&D programs to prioritize additional application grand challenges with advice from stakeholders
Semiconductor Manufacturing Process Flow

Ultimate product is a device:

- Co-design: function, process, materials, tools
- 1000+ process steps
- 70+ masks
- Hundreds of materials
- Hundreds of different tools

Digital twin: AI-enabled model development through an integrated system of tools, materials, processes, sensors, algorithms, data analytics
Use of AI at the Edge in a Smart Factory - Micron Example

• AI to improve factory efficiency
 • Need data analysis locally, at the factory

• Deploy IoT platform for early detection with IoT sensors (image, acoustic, video)
 • Infrequent events, detect low-frequency, high-impact events
 • Automate root-cause analysis and prescribe action
 • Example: Detect dispense of nozzle tip and nearby area, time period of dispense (if irregular, stop tool)
 • Install on tools, such as photo tools
 • “Image analytics” detect deviation from standard to decrease variability

• Large amount of data, visually examine
 • 470,000 sensors
 • 13 terabytes of data
 • 15.6 million wafer images weekly

• Automatically provide diagnostics
Challenge #3: Achieve high quality, yield, throughput – Data Analytics

Manufacturing line – secure, real-time, big data sets (FEOL, BEOL)
- Individual process control, reports, Cp, Cpk, dashboards
- Multi-process AI learning models – driving 6sigma quality
- Closed-loop statistical feedback control
- Time series performance monitoring
- Line, cell, site, region insights
- M2M comms/adjustments

U.S. is 5-8 years behind Asia-Pacific

World class Ind4.0 data analytics requires industry-wide, open-source machine data communication protocol eg] IPC-2591 CFX

IPC – Matt Kelly, 2021
300 mm
(1) Late-stage Prototyping at Advanced Nodes
 No Process Changes
(2) Mid/Late-stage Prototyping
 CMOS+X
 Changes: Mostly BEOL, some FEOL
(3) Pathfinding
 New Materials/Process Dev
 Process Experimentation

200 mm
(4) Mid/Late-stage Prototyping
 CMOS + X
 New Materials allowed
(5) Concept Hardening to Mid-stage
 Changes/New Materials allowed
(6) NSTC-enhanced University Facilities
 Coupons, 100/200 mm

Packaging
(7a) Late-stage Prototyping
 Standard Chiplet Interfaces
 No or minimal changes
(7b) Pathfinding
 Advanced + standard Packaging
 Controlled changes allowed
(7c) Early-Stage Proof-of-Concept
 Process and tool development
 Changes/New Materials allowed
Innovation in Semiconductor Manufacturing

Development of digital twins for semiconductor prototyping and manufacturing: AI-based model development through integrated (materials, equipment, process) + metrology/sensors + AI/data analytics

Level 1: Fixed Flow
- For innovations in chip design, process optimization, yield improvement …
- No new materials, equipment, or processes

Level 2: Modified Flow
- Introduce and optimize new materials, equipment, processes
- AI yields new models and interactions

Level 3: Integrated with Discovery
- Integrate manufacturing processes into discovery
- AI created new models and interactions to reduce time to manufacturing readiness
Eric Forsythe

CHIPS Digital Twin Manufacturing USA Institute
Digital Twin Institute

Vision
Enable *seamless integration of digital twin models* into the U.S. semiconductor manufacturing, advanced packaging, and assembly industries, enabling rapid adoption of innovations and enhancing domestic competitiveness for decades.

Mission
Foster a *collaborative environment* within the domestic semiconductor industry, enabled by the world’s first *shared* semiconductor Digital Twin process *validation facility*, industry-relevant research projects, and digital-twin supported workforce training.
For the shared facility to solve common industry challenges, what is the most important federal investment that will lead to private co-investment? (Pick 1)
What other areas of this shared facility should receive federal investment?
Digital Twin Institute Objectives

- **Reduce** the time and cost for chip development and manufacturing
- **Accelerate** the adoption of semiconductor manufacturing innovations
- **Increase** access to semiconductor manufacturing training through the adoption of digital twin-enabled tools
- **Expand** access to digital twin tools, solutions and frameworks
Digital Twin Institute Approach

1. Establish a shared physical facility
 Expected activities:
 - Baseline facility testbed
 - Digital emulation hardware
 - Core technical & operations staff

2. Competitively fund industry-led technical and workforce development projects
 Deliver technical solutions, de-risk new tools, and conduct data analysis
 Develop and test education & workforce development tools enabled by digital twins

3. Digital framework for interoperable data and models

4. Create a shared marketplace of digital twin models

Data analysis tools

Full process flows

DT+
In addition to a shared facility, what institute-led technical project topics are most important to your organization? (Pick 3)
Manufacturing USA Vision and Mission

VISION: Securing U.S. Global Leadership in Advanced Manufacturing

MISSION: Connecting people, ideas, and technology to:
- solve industry-relevant advanced manufacturing challenges
- enhance industrial competitiveness and economic growth
- strengthen our economic and national security
Manufacturing USA Purpose: Accelerate Discovery to U.S. Production

Create an effective collaboration environment for applied industry research to "bridge the gap" from discovery to production.

MANUFACTURING INNOVATION PROCESS

1. Basic Research
2. Proof of Concept
3. Production in Laboratory
4. Capacity to Produce Prototype
5. Capacity in Production Environment
6. Demonstration of Production Rates

FUNDING & INVESTMENTS

- **PRIVATE SECTOR**
- **GOVERNMENT & UNIVERSITIES**

1. $$
2. $
Institute Partnership Model

Common Institute Design:

- Industry-led public-private partnership
- Typically $70-120M federal investment
- At least 1:1 match with private funds
- Neutral convening for collaborations
- Each institute develops a unique technology
- Institutes address the education and workforce skills gap for their technologies

GOVERNMENT

FEDERAL LABS

ACADEMIA

INDUSTRY

MANUFACTURING USA INSTITUTE
- Shared Use Facility
- Testbeds
- Equipment
- Materials Prototyping
Manufacturing USA Network: 17 Institutes and Growing

<table>
<thead>
<tr>
<th>ELECTRONICS</th>
<th>MATERIALS</th>
<th>ENERGY/ENVIRONMENT</th>
<th>DIGITAL/AUTOMATION</th>
<th>BIO-MANUFACTURING</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM Photonics Albany, NY</td>
<td>Advanced Fibers and Textiles Cambridge, MA</td>
<td>Modular Chemical Process Intensification New York, NY</td>
<td>America Makes Youngstown, OH El Paso, TX</td>
<td>biofabusa Regenerative Manufacturing Manchester, NH</td>
</tr>
<tr>
<td>NEXTFLEX Electronics San Jose, CA</td>
<td>Advanced Composites Knoxville, TN Detroit, MI</td>
<td>Sustainable Manufacturing Rochester, NY</td>
<td>ARM Institute Pittsburgh, PA</td>
<td>NIMBL Biopharmaceutical Manufacturing Newark, DE</td>
</tr>
<tr>
<td>PowerAmerica Raleigh, NC</td>
<td>Advanced Materials Detroit, MI</td>
<td>CESMII Smart Manufacturing Los Angeles, CA</td>
<td>Digital Manufacturing & Cybersecurity Chicago, IL</td>
<td>BioMADE Bioindustrial Manufacturing St. Paul, MN</td>
</tr>
</tbody>
</table>

Additional Institutes:
- Integrated Photonics Albany, NY
- Rochester, NY
- Flexible Hybrid Electronics San Jose, CA
- Flexible Hybrid Electronics San Jose, CA
- Wide Bandgap Semiconductors Raleigh, NC
- Integrated Photonics Albany, NY
- Rochester, NY
- Advanced Composites Knoxville, TN
- Detroit, MI
- Flexible Hybrid Electronics San Jose, CA
- Wide Bandgap Semiconductors Raleigh, NC
- Advanced Materials Detroit, MI
- Modular Chemical Process Intensification New York, NY
- Sustainable Manufacturing Rochester, NY
- Advanced Robotics & AI Pittsburgh, PA
- Digital Manufacturing & Cybersecurity Chicago, IL
- Additive Manufacturing Youngstown, OH
- El Paso, TX
- Regenerative Manufacturing Manchester, NH
- Biopharmaceutical Manufacturing Newark, DE
- BioMADE Bioindustrial Manufacturing St. Paul, MN

Additional Programs:
- Bio-MANUFACTURING + New CHIPS Manufacturing USA institute
- Manufacturing USA Network
- Upcoming NIST competition for another new institute

[Learn more at ManufacturingUSA.com](https://ManufacturingUSA.com)
Conclusion
What areas would be most important for your organization to co-invest in, based on the value you expect to receive? (Ranking)
Next Steps

• Notice of Funding Opportunity — Spring of 2024
• Webinars and Proposer Days
• Sign up for emails from CHIPS.gov for details on webinars, events, and funding opportunities
• Send your outstanding questions to research@chips.gov
Thank you
Break Out Room Participants

- Please have your microphone muted when not speaking.
- Please use the raise hand feature to contribute. You will be called on in turn.
- Please list your name and affiliation in the participant list.
 - Select the three dots … on your image or next to your name in the participant list.
 - Select ‘rename’
 - Indicate your name and affiliation
- All additional comments can be sent to research@chips.gov
Breakout Session 1

Key Research Projects

1. In your opinion, what are the key research problems we need to solve to make digital twin tools that contribute to an accelerated innovation cycle?

2. In your opinion, what are the most impactful digital twin problems that member-led research projects in this institute should address?
 a. How should investments in member-led projects be distributed between manufacturing readiness levels 4-7 (where solutions are often shared) versus higher MRLs (where solutions are proprietary and only general outcomes are shared)?
 b. How should we balance investment between shared industry challenges and specific member-led projects?
Breakout Session 2

Physical Testbed

1. If we set up a Manufacturing USA digital twin shared facility, what are the most important gaps for federal funds to address that can maximize innovation and participation from a company like yours?
 a. In your opinion, what should the institute invest in for your sector to get the most benefit?
 b. What kind of participation do you imagine for your company?
 c. If your company were to participate in a shared facility, what co-investment might you provide? Under what terms?