Reducing Lifecycle GHG Emissions of Construction Materials

Robert D. Moser, PhD
Senior Scientific Technical Manager – Materials and Structures
Geotechnical and Structures Laboratory
US Army Engineer Research and Development Center
US Army Corps of Engineers

8 June 2022
USACE Mission Areas

Military Missions
- DoD Construction Agent
- CCMD Support, Overseas Contingency Operations (OCO)
- Installation Support, Environmental, Energy and Sustainability

Contingency Operations
- “Whole of Government” Disaster Response and Recovery
- Life-Cycle Flood Risk Management
- Critical Infrastructure

Civil Works
- Common Operating Picture / Environment
- Civil Works Programs
- Military Programs
- Emergency and Contingency Operations

International & Interagency
- Federal / State / Local
- “Whole of USACE” Capabilities
- Capacity Development

Geospatial Support

Research & Development
- Support to Warfighter Readiness
- Force Projection, Installations & Resilience Environment
- Water Resource Modeling

Real Estate - Acquire, Manage and Dispose / DoD Recruiting Facilities / Contingency Operations
Top 10 USACE R&D Priorities

ADDRESSING THE NATION’S TOUGHEST CHALLENGES WITH MULTI-DISCIPLINARY SOLUTIONS

<table>
<thead>
<tr>
<th>Priority</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mitigate and Adapt to Climate Change</td>
</tr>
<tr>
<td>2</td>
<td>Win Future Wars</td>
</tr>
<tr>
<td>3</td>
<td>Modernize our Nation’s Infrastructure</td>
</tr>
<tr>
<td>4</td>
<td>Support Resilient Communities</td>
</tr>
<tr>
<td>5</td>
<td>Enable Smart and Resilient Installations</td>
</tr>
<tr>
<td>6</td>
<td>Ensure Environmental Sustainability and Resilience</td>
</tr>
<tr>
<td>7</td>
<td>Secure Reliable Installation Energy</td>
</tr>
<tr>
<td>8</td>
<td>Revolutionize and Accelerate Decision Making</td>
</tr>
<tr>
<td>9</td>
<td>Improve Cyber and Physical Security</td>
</tr>
<tr>
<td>10</td>
<td>Protect and Defend the Arctic</td>
</tr>
</tbody>
</table>

UNCLASSIFIED

APPROVED

USACE Command Council
17 NOVEMBER 2021
Climate Change is an Existential Threat

“We face all kinds of threats in our line of work, but few of them truly deserve to be called existential. The climate crisis does. **Climate change is making the world more unsafe and we need to act.**”

Secretary of Defense Lloyd J. Austin III
Leaders Summit on Climate, 22 April 2021
DoD and Climate Change

Objectives:
1. Identify short- and long-term solutions to adapt, mitigate, and prepare the DoD for climate change
2. Leverage the DoD’s buying power to enable societal change:

Actions:
• Minimize DoD’s adverse impact on the climate
• Increase DoD’s resilience to climate change (This is what we do!)
 a. Advance science and technology solutions to solve climate change challenges
 b. Prepare the Joint Force for missions in response to climate change
• Determine metrics for tracking performance outcomes and outputs
• Leverage DoD buying power to drive big ideas for climate mitigation
• Identify analytically robust frameworks for prioritization and decision support

Adapted from the
Climate 3-Star Program-Resource Management Group (PRMG), 17 March 2021
Army and Climate Change

Army Climate Change Kick-off, 10 March 2021

<table>
<thead>
<tr>
<th>AMERICA'S ARMY:</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globally Responsive, Regionally Engaged</td>
<td></td>
</tr>
</tbody>
</table>

- **Adaptation** “means adjustment in natural or human systems in anticipation of or response to a changing environment in a way that effectively uses beneficial opportunities or reduces negative effects” (See Chapter 28 of NCA 4 Reducing Risks Through Adaptation Actions.) Adaptation is an action.

- **Resilience** “means the ability to anticipate, prepare for, and adapt to changing conditions and withstand, respond to, and recover rapidly from disruptions.” Resilience is a trait, capacity, or attribute.

- **Climate Change Mitigation**: Addressing the **Causes** Generally: Consists of actions to limit global warming and its related effects. This generally involves reductions in human emissions of greenhouse gases (GHGs). Fossil fuels account for more than 80% of all GHG emissions.

- **Climate Change Adaptation**: Addressing the **Impacts** Generally: The process of adjusting to current or expected climate change and its effects. For humans, adaptation aims to moderate or avoid harm, and exploit opportunities.
USACE and Climate Change

USACE is committed to “integrate the best available observed and forward-looking climate information into its missions.”

Action 1: MODERNIZE USACE programs and policies to support climate-resilient investments

Action 2: MANAGE USACE lands and waters for climate preparedness and resilience

Action 3: ENABLE state, local, and tribal government preparedness

Action 4: PROVIDE actionable climate information, tools, and projections

Action 5: PLAN for climate change-related risks to USACE missions and operations
ERDC Line of Sight

- Climate considerations are an essential element of US foreign policy and national security.
- The US will move quickly to build resilience against the impacts of climate change.
- Advance science and technology solutions to solve climate change challenges.
- Prepare the Joint Force for missions in response to climate change.
- Mitigation actions to limit global warming and its related effects.
- Adaptation to current or expected climate change and its effects.
- Integrate the best available observed and forward-looking climate information into its missions.

“I’m grateful to all the leaders who’ve announced new commitments to help us meet the existential threat of climate change... we’re going to make these commitments real, putting all of our nations on a path to a secure, prosperous, and sustainable future.”

US President Joe Biden
Leaders Summit on Climate, 23 April 2021
ERDC and Emerging Climate Change Challenges

- Water Treatment Reuse and Energy Production
- Lifecycle building design are materials management
- Future low-energy materials for safe, secure installations
- Safe and Sustainable Range Operations
- Resilient coastal shores and ecosystem impacts
- ERDC’s Intelligent Environmental Battlefield Awareness
- Agile basing in remote locations
- All-weather high-energy density, low carbon vehicle power
- ERDC’s Power Projection in A2/AD

Built – Natural – Mission
Civil and Military Facilities and Infrastructure Footprint

Military Mission:
- Facilities at 800+ bases
 - 560k+ facilities
 - Buildings: warehouses, offices, barracks, etc
 - Structures: bunkers, bridges, wharfs, etc
 - Linear systems: airfields, rail, roads, etc
- Severe environments from the South Pacific to operations in the Arctic
- Concrete, Steel, etc!

Civil Works Mission:

WATER-RELATED INFRASTRUCTURE

1,200+ Dams
5,000+ Recreation Areas
153 Hydroelectric Powerplants
150 Million acre-feet Serves
10 Million Acres
25,000 Miles of Navigable Waterways

Olmstead Lock
Folsom Dam
Sustainability and Climate Change Drivers

Civil Works
- Aging infrastructure burden outweighs new infrastructure
- Limited sustainability drivers for materials and construction
- Strong emphasis on 100+ year service lives, service life extension, and asset management
- Long-standing practices that have sustainability benefits

Military
- Post 9/11 threats transition towards peer and near-peer
- Modernize to fight and win
- Limited direct drivers for sustainability and climate change
- Operational impacts of climate change on warfighting functions
- Energy, water, and natural hazard resilience drives modernization
Opportunities

- Sustainability and climate resilience drivers are forefront drivers
- People and $$ applied toward action on climate change and resilience
- R&D initiatives growing in:
 - Nature based solutions
 - Multi-hazard resilience
 - Design / materials / manufacturing nexus
 - Advanced materials-by-design (+biotech)
 - Manufacturing / construction processes

USACE work to bridge that gap: Policy, data, tools

It is the policy of USACE to integrate climate change and to action into our Agency’s program, operations, programs, and projects.

...to stay the best available and actionable climate science and climate change information.*

...it shall be considered at every step in the project life cycle for all USACE projects both existing and planned.

Executive Order 14008 of January 27, 2021

Tackling the Climate Crisis at Home and Abroad

The United States and the world face a profound crisis. We have a narrow moment to pursue action at home and abroad in order to avoid the most catastrophic impacts of that crisis and to seize the opportunity to tackle climate change present. Domestic action must go hand-in-hand with United States International leadership aimed at significantly enhancing global action. Together, we must listen to science and meet the moment.

Source: Dr. Kate White, USACE Climate Change and Resilience Community of Practice Lead
Climate Change and Resilience: Materials & Structures

Sustainable Infrastructure Design
- Buildings infrastructure design approaches for sustainable construction materials
- Balanced design approaches considering sustainability / embodied energy with other requirements for function and resilience
- Life cycle durability and service life extension – extending sunk embodied energy
- Modularization that enables future re-use of components / systems

Sustainable Materials and Manufacturing
- Novel cement chemistries with reduced embodied energy
- Materials design requirements that promote sustainable optimization
- Bio-based / nature-based solutions and alternatives to concrete and steel
- Low-energy and optimized topologies through advanced manufacturing
- Enable circular economy – consider cradle to cradle in lifecycle metrics

Future Threats, Hazards, and Resilience
- Future climate impacts on serviceability and performance of critical facilities
- Future hazards on military and civil infrastructure (flood, fire, wind, storm surge, compound hazards)
- Social / humanitarian impacts on facilities, infrastructure, and communities
- Translation of uncertain future hazards / resilience requirements to ENGINEERING
Recent Activities in Sustainable Cement and Concrete

- Portland Limestone Cement
- Specifications
 - ASTM C1157
 - ASTM C595 or AASHTO M240
 - Pervasive use of SCMs
- Alternative Cementing Chemistries
 - Multiple activities Civil and Military
 - Leveraging experience in specialty military apps
 - PLC, CSA, CAC, MPC, LC3, Belite, Carbonating…
 - along with manufacturing innovations…
Optimizing Construction Materials-By-Design

Materials Analysis

Experiments Database

Meso-Scale M&S Design

RVE Constitutive Behavior

Virtual Microstructure

CEMHYD3D GEMS/THAMES

Reaction Products

Virtual Proportioning

US Army Corps of Engineers • Engineer Research and Development Center
Civil and Military Aging Infrastructure Challenges

- Common drivers across civil and military infrastructure systems
- Concrete, steel, timber, polymers, composites, geomaterials
- Extend life of aging infrastructure
- Sustainable new infrastructure
- Consider life cycle embodied energy

Drivers: extend sunk embodied energy in existing infrastructure, address sustainability in new infrastructure, balance sustainability with performance and O&M costs
Nature-Based Solutions

- Supported through the USACE Engineering With Nature initiative
 - Natural solutions as opposed to hard civil works infrastructure
 - Science and engineering that produces operational efficiencies
 - Using natural process to maximum benefit beyond built projects
 - Broaden and extend the benefits provided by projects
Additive Construction

Problem
• Expeditionary Structures are:
 • Labor intensive
 • Energy expensive
 • Material expensive

Solution
• 3D print custom-designed expeditionary structures on-demand, in the field, using locally available materials.

Impact
• Saves time
• Saves money
• Saves material
• Saves energy/fuel
• Reduction in hard labor & manpower
New Initiative: Green Climate Resilient and Efficient DoD Installation Technologies (Green CREDIT)

- Comprehensive multi-level data management structure for measuring, analyzing, and accounting for carbon storage on DoD lands including circular economy considerations

- Life Cycle Analysis of additive construction and green materials with carbon-capture / -sequestration capabilities as construction negative emissions technologies (NET)

- New materials and additive construction systems evaluated in parallel with existing MILCON design methodologies

- Unified codes and standards for sustainable manufacturing and materials performance evaluation

Goal: Deliver advanced and cost-effective technologies to support climate resiliency on DoD installations.
Thoughts in Construction Materials and Design

- Large GHG emission drivers in cement, geomaterials, construction, and other high-energy manufacturing processes

- Government construction often relies on commodity products / perf specs: how can we better enable innovative / sustainable products?

- We need to think beyond steel and concrete

- Materials and lifecycle design are hand-in-hand and will increasing be driven by the circular economy – and this is a big paradigm shift

- We must think full life-cycle of buildings and infrastructure: design, manufacturing, construction, operations, disposition, recycling

- Many professions (some may call them tribes) must work together to innovate:
 - Researchers, engineers, policy, academia, manufacturers, contractors, labor
Robert D. Moser, PhD, SSTM
Robert.d.moser@usace.army.mil
601.634.3261

Connect to ERDC online

Scan this QR code with your phone for instant access

new ways to make the world safer and better
Materials and Manufacturing

Supporting Army S&T, USACE, and Military and Civilian Stakeholders and Partners in ERDC Core Competencies:

- Blast and Weapons Effects on Structures and Geomaterials
- Civil and Military Engineering
- Military Installations and Infrastructure
- Cold Regions Science and Engineering

Cutting-Edge Blast, Impact, and Penetration Testing Equipment

High-Performance Computing Capabilities

Large-Scale Structural Testing Systems

Materials Analysis and In-Situ Mechanics

Force Protection and Weapons Effects
- Advanced weapons effects
- Multi-functional materials
- Structural hardening
- Indigenous materials

Force Projection and Maneuver Support
- Rapid repair and retrofit
- Lightweighting
- Indigenous materials
- Remote assessment

Infrastructure, Installations & Environment Quality
- Sustainability
- Operational energy
- Life-cycle durability / performance
- Environmental impacts

Cross-Cutting Technologies
- Additive / advanced manufacturing
- Multi-scale modeling
- Robotic platforms
- Artificial Intelligence
- Advanced measurement science