

How Neutrons Are Produced: The NIST Research Reactor and Cold Neutron Sources

Dagistan Sahin NIST Center for Neutron Research

February 3, 2022

Dagistan.sahin@nist.gov

Outline:

Basics

- NBSR History, Description
- Cold Source Development
- Conclusion

Informal History on the NCNR Web Site under About NCNR: https://www.ncnr.nist.gov/NCNRHistory_Rush_Cappelletti.pdf

VIST Center for

NIST Research Reactor History

- Designed in the 1960's and included a beam port for a cold neutron source.
- NBSR First Critical, December 7, 1967.
- 10 MW until 1985, 20 MW since.
- Cold Neutron Facility Development:
 - D₂O Cold Neutron Source installed, 1987.
 - First neutrons in the guide hall in 1990.
 - LH₂ Source installed September 1995.
 - Advanced LH₂ CNS, Unit 2, installed 2002.
 - NCNR Expansion Project 5 more guides.
 - "Peewee" CNS installed 2012 in BT-9.

Thermal Reactor Components

NIST Center for Research <u>Fissile fuel</u> material, such as ²³⁵U, only 0.7% abundant, or ²³⁹Pu.

- 2. <u>Moderator</u> to slow neutrons (D_2O , H_2O , Graphite)
- 3. <u>Control Elements (Cd, B)</u>
- 4. Other Stuff:
 - Shielding
 - Coolant
 - Neutron Source
 - Neutron Detectors

NBSR Core Characteristics

HEU** Fuel: 93% ²³⁵U₃O₈ + AI

- 350 g ²³⁵U per Fuel Element
- 34 plates: 11 in x 2.5 in x .02 in
- Heavy water coolant (D₂O)

30 Fuel Elements

- Fuel cycle ~38 days @ 20 MW
- Load 4 fresh elements, reposition the others
- About 960 g ²³⁵U consumed per cycle

Split Core – No Fuel at Mid-plane

- The BTs and CNS are at this elevation.
- Thermal neutron "flux trap".
- BT fluxes ~ $1.5 \times 10^{14} \text{ n/cm}^2\text{-s}$

** Need to convert to LEU (U-10Mo) when fuel is qualified.

The NBSR was designed with a 55-cm diameter cryogenic beam port for a D₂O-ice CNS.

Reference: Kopetka et. al., NISTIR 7352

Production of Cold Neutrons

- The neutrons born in fission have an average kinetic energy of about 2 *Mega*-electron volts, 2 MeV.
- They are slowed to thermal energies (20 400 *milli*-eV) by scattering from the molecules of the heavy water (D₂O) moderator in the reactor. The D₂O is about 115 °F, or 320 Kelvin.
- In thermal equilibrium, the neutron energy spectrum is determined solely by the temperature of the moderator (a Maxwell–Boltzmann distribution), analogous to the motion of atoms in an ideal gas.

To reach lower energies, therefore, we introduce a cold moderator, such as liquid hydrogen at 20 K.

The LH₂ CNS, Unit 1, installed in 1995, had a <u>gain of 6</u> times the D_2O source

Thermal-hydraulic tests with LH₂ conducted at NIST Boulder.

NIST Center for Research

- To fully illuminate the beam ports, the source had to have a very large area.
- A 320-mm spherical annulus, 20 mm thick, with a 200-mm diameter exit hole was chosen:
 - Low heat load (850 W)
 - Ease of fabrication. Material: Al 6061-T6
 - Composed of concentric Al spheres (5 liters of LH₂)
 - Hydrogen vapor filled the inner sphere, which was open at the bottom.

Unit 1 had too much empty space next to the reactor core.

Vapor in the inner sphere scattered cold neutrons from the beam.

Much more D_2O in Unit 2 results in a higher neutron flux in the CNS region and the adjacent fuel elements.

32 x 24 cm ellipsoid allowed more D_2O and a thicker LH_2 annulus.

Gain ~ 2 (2002)

Advanced Hydrogen Cryostat

The liquid hydrogen cold source is passively safe, simple to operate, and very reliable

Liquid Hydrogen Thermosiphon

- A *thermosiphon* is the simplest way to supply the source with LH_2 .
- Cold helium gas cools the condenser below 20 K.
 - Hydrogen liquefies and flows by gravity to the moderator chamber.
 - Vapor rises to the condenser and a naturally circulating system is established.
- The system is closed to minimize hydrogen gas handling.
- All system components are surrounded by He containments.

NIST Center for Neutron Research

Insertion of Unit 2 Cold source – November 2001

Existing LH₂ CNS, In-pile Guides as of April 2011

CTW Beam Port (now has inpile piece for new guides)

MACS

NG-1

NG-2

NG-3

NG-4

NG-5

NG-6

NG-7

CTE

A second LH₂ source was installed in BT-9 (2012) as part of the NCNR Expansion Initiative

- 5 new guides have been installed for the guide hall expansion.
- MACS has moved to BT-9 and has its own small LH₂ source.
- "Peewee": 11-cm ID, and a 0.5-l volume.
- It has a gain of about
 1.7 over Unit 2.
- MCNP code used to estimate performance and heat load.

Side View of BT-9 Cold Source

Inpile Assembly

The plug provides shielding and supports the cryostat assembly.

A diverging beam of cold neutrons is provided for MACS.

NIST Center for

CNS Team installed Peewee in BT-9 in September 2011.

NIST Center for Neutron Research

Conclusion

 The LH₂ cold sources at NIST have made NCNR a world class cold neutron facility.
 About 70% of experiments use cold neutrons.

- LD₂ source planned for 2023(?), to replace Unit 2 (*reference:* IGORR 2016, Berlin).
- Relicensed in 2009 for 20 more years!!
- > Plan to relicense again in 2029.
- Studies have been initiated for a new reactor optimized for cold neutron production.

NCNR Expansion – Fall 2010

Xenon Poisoning

The A=135 fission product decay chain:

... ¹³⁵Te -> ¹³⁵I -> ¹³⁵Xe -> ¹³⁵Cs -> ¹³⁵Ba
 T_½ 19 sec 6.57 hr 9.10 hr (stable)
 Fission yield (γ) 6.39% 0.23%

 $\frac{\delta Xe}{\delta t} = \gamma_{Xe} \Sigma_f \varphi(r,t) + \lambda_I I(r,t) - \lambda_{Xe} Xe(r,t) - \sigma_a^X \varphi(r,t) Xe(r,t)$ (fission) (¹³⁵I decay) (¹³⁵Xe decay) (Burnup)

At 20 MW, XE burnup ~ 5 times its radioactive decay!

Immediately after a shutdown, Xe concentration grows to a maximum before decaying with a 9-hr half life.

The buildup of ¹³⁵Xe can overwhelm the available excess reactivity and keep the NBSR shutdown 30 - 40 hours.

- reactor start-up at time = 0 after a shutdown of one month
- reactor trip at t = 50 hours

Figure 9 Behavior of Xenon-135

After an unplanned shutdown

