Quantifying Spin Interactions Using Reinforcement Learning

Jessica Opsahl-Ong

Collaborators:
Kate Meuse, Paul Kienzle, William Ratcliff
Magnetism

Many fields with current interest in magnetic structures

• Hard drives, MRAM, quantum computing, etc.

In order to utilize magnetic properties, we must be able to identify the specific interactions that give way to magnetism
Magnetic Properties

The magnetic spin ground state is determined by the minimization of its total energy (represented by the Heisenberg-Hamiltonian)

\[H = -\frac{1}{2} \sum_{i,j} J_{i,j} \mathbf{S}_i \cdot \mathbf{S}_j \]

However, knowing the ground state (i.e. the spin vectors) does not uniquely determine the set of interactions (i.e. the coupling constant J) which gave rise to the Hamiltonian.
Finding J

- In order to quantify J, we must make a magnetic excitation
 - Simply flipping the direction of one spin is too high-energy
 - Instead, share the single spin reversal among many spins \rightarrow creates a spin wave \rightarrow measure the energy of this wave
 - Create and measure spinwave using inelastic neutron scattering
SpinW is a MATLAB library that can numerically simulate magnetic structures and their spinwave dispersions.

We used pySpinW which binds SpinW to Python.

Tested how accurate this interface is by comparing pySpinW and SpinW results.
Square Lattice Ferromagnet

Nearest neighbor model

Next-nearest neighbor model
Distinguishing Models

- Can fit for J1 and J2 using BUMPS
- Use Bayesian Information Criterion (BIC) to distinguish between models
 - Based on fit + number of parameters

Question: what are the most informative measurements to fit for Js and distinguish between models?
Reinforcement Learning

Defined:
Teaching a computer to make optimal decisions using rewards

How does it work?
1. The agent is in an environment
2. The environment returns a state
3. Agent makes action based on state
4. Agent is rewarded after action
5. Algorithm learns how to best make actions based on rewards
Reinforcement Learning

https://mpatacchiola.github.io/blog/2017/01/15/dissecting-reinforcement-learning-2.html
Applying Reinforcement Learning

- Action: choosing measurement
- State: all measurements chosen thus far
- Ends episode when chi squared & uncertainty is low
Applying Reinforcement Learning

- Action: choosing measurement
- State: all measurements chosen thus far
- Ends episode when chi-squared & uncertainty is low

------------Reward function-------------------------------------

-100 per measurement taken
+150 when BIC difference > 10, otherwise 10 * (BIC difference)
+50 when chi-squared < 1 and uncertainty < 100
Next-nearest neighbor model

Dispersion along [1 1 0] direction

Dispersion along [1 0 0] direction

\(\omega \) (meV)

\(Q \)
Run

Next-nearest neighbor model

Dispersion along [1 1 0] direction

Diagonal

ω (meV)

(next-nearest) (nearest)

Q

Not diagonal

Dispersion along [1 0 0] direction

ω (meV)

(next-nearest) (nearest)

Q
Results - Rewards

- Run with real model as next-nearest neighbor
- General upward trend in rewards – means it’s learning!
- Need to run for longer
Results – Overall Goals

Number of measurements per episode

Model chosen at the end of an episode
Results – Measurement Distribution

First 1000 Episodes

Last 1000 Episodes
Next Steps

1. Calculating neutron intensities rather than just the dispersion
 • current difficulty with python bindings to SpinW
2. Including the finite resolution of the instrument
3. Exploring the use of alternative methods
 • Gaussian Processes
4. Publishing
Acknowledgements

Thanks to the SURF program directors, interns and mentors.

Special thanks to William Ratcliff.

We are grateful for funding from the Center for High Resolution Neutron Scattering.
Any Questions?
Magnet Lattice Example

Spin

Coupling interaction
Goals & Impact

- Beam time is valuable – limited access
- Want more efficient measurements as not all are required
- Software to be implemented on instruments using NICE
Magnetic Crystal Structures

Square lattice structure
Magnetic Crystal Structures

Nearest neighbor model
Magnetic Crystal Structures

Next-nearest neighbor model
Key Parameters

J_1 – coupling constant for nearest neighbor interactions

J_2 – coupling constant for next-nearest neighbor interactions
Defining the Problem

You know the basic structure → how do you know which interactions there are & their coupling constants?
Spinwaves

Dispersion along [1 1 0] direction

Nearest neighbor model

Next-nearest neighbor model
GOAL

Minimize the number of measurements necessary by implementing a way to determine the most useful measurements.

-- useful: distinguish between different models & find correct values
Results
Results
Conclusion