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ABSTRACT 
Rising concern for the societal implications of artifcial intelligence 
systems has inspired a wave of academic and journalistic literature 
in which deployed systems are audited for harm by investigators 
from outside the organizations deploying the algorithms. However, 
it remains challenging for practitioners to identify the harmful 
repercussions of their own systems prior to deployment, and, once 
deployed, emergent issues can become difcult or impossible to 
trace back to their source. 

In this paper, we introduce a framework for algorithmic auditing 
that supports artifcial intelligence system development end-to-end, 
to be applied throughout the internal organization development life-
cycle. Each stage of the audit yields a set of documents that together 
form an overall audit report, drawing on an organization’s values 
or principles to assess the ft of decisions made throughout the pro-
cess. The proposed auditing framework is intended to contribute to 
closing the accountability gap in the development and deployment 
of large-scale artifcial intelligence systems by embedding a robust 
process to ensure audit integrity. 

CCS CONCEPTS 
• Social and professional topics → System management; Tech-
nology audits; • Software and its engineering → Software de-
velopment process management. 
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Algorithmic audits, machine learning, accountability, responsible 
innovation 
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1 INTRODUCTION 
With the increased access to artifcial intelligence (AI) development 
tools and Internet-sourced datasets, corporations, nonprofts and 
governments are deploying AI systems at an unprecedented pace, 
often in massive-scale production systems impacting millions if not 
billions of users [1]. In the midst of this widespread deployment, 
however, come valid concerns about the efectiveness of these auto-
mated systems for the full scope of users, and especially a critique 
of systems that have the propensity to replicate, reinforce or am-
plify harmful existing social biases [8, 37, 62]. External audits are 
designed to identify these risks from outside the system and serve 
as accountability measures for these deployed models. However, 
such audits tend to be conducted after model deployment, when 
the system has already negatively impacted users [26, 51]. 

In this paper, we present internal algorithmic audits as a mecha-
nism to check that the engineering processes involved in AI system 
creation and deployment meet declared ethical expectations and 
standards, such as organizational AI principles. The audit process is 
necessarily boring, slow, meticulous and methodical—antithetical 
to the typical rapid development pace for AI technology. However, 
it is critical to slow down as algorithms continue to be deployed 
in increasingly high-stakes domains. By considering historical ex-
amples across industries, we make the case that such audits can be 
leveraged to anticipate potential negative consequences before they 
occur, in addition to providing decision support to design mitiga-
tions, more clearly defning and monitoring potentially adverse out-
comes, and anticipating harmful feedback loops and system-level 
risks [20]. Executed by a dedicated team of organization employees, 
internal audits operate within the product development context and 
can inform the ultimate decision to abandon the development of 
AI technology when the risks outweigh the benefts (see Figure 1). 

https://doi.org/10.1145/3351095.3372873
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Inspired from the practices and artifacts of several disciplines, we 
go further to develop SMACTR, a defned internal audit framework 
meant to guide practical implementations. Our framework strives 
to establish interdisciplinarity as a default in audit and engineering 
processes while providing the much needed structure to support 
the conscious development of AI systems. 

2 GOVERNANCE, ACCOUNTABILITY AND 
AUDITS 

We use accountability to mean the state of being responsible or 
answerable for a system, its behavior and its potential impacts [38]. 
Although algorithms themselves cannot be held accountable as they 
are not moral or legal agents [7], the organizations designing and 
deploying algorithms can through governance structures. Proposed 
standard ISO 37000 defnes this structure as "the system by which 
the whole organization is directed, controlled and held accountable 
to achieve its core purpose over the long term."1 If the responsible 
development of artifcial intelligence is a core purpose of organiza-
tions creating AI, then a governance system by which the whole 
organization is held accountable should be established. 

1https://committee.iso.org/sites/tc309/home/projects/ongoing/ongoing-1.html 

Figure 1: High-level overview of the context of an internal 
algorithmic audit. The audit is conducted during product 
development and prior to launch. The audit team leads the 
product team, management and other stakeholders in con-
tributing to the audit. Policies and principles, including in-
ternal and external ethical expectations, also feed into the 
audit to set the standard for performance. 

Raji & Smart, et al. 

In environmental studies, Lynch and Veland [45] introduced 
the concept of urgent governance, distinguishing between audit-
ing for system reliability vs societal harm. For example, a power 
plant can be consistently productive while causing harm to the 
environment through pollution [42]. Similarly, an AI system can 
be found technically reliable and functional through a traditional 
engineering quality assurance pipeline without meeting declared 
ethical expectations. A separate governance structure is necessary 
for the evaluation of these systems for ethical compliance. This 
evaluation can be embedded in the established quality assurance 
workfow but serves a diferent purpose, evaluating and optimizing 
for a diferent goal centered on social benefts and values rather 
than typical performance metrics such as accuracy or proft [39]. 
Although concerns about reliability are related, and although prac-
tices for testing production AI systems are established for industry 
practitioners [4], issues involving social impact, downstream ef-
fects in critical domains, and ethics and fairness concerns are not 
typically covered by concepts such as technical debt and reliability 
engineering. 

2.1 What is an audit? 
Audits are tools for interrogating complex processes, often to deter-
mine whether they comply with company policy, industry standards 
or regulations [43]. The IEEE standard for software development 
defnes an audit as “an independent evaluation of conformance of 
software products and processes to applicable regulations, stan-
dards, guidelines, plans, specifcations, and procedures” [32]. Build-
ing from methods of external auditing in investigative journalism 
and research [17, 62, 65], algorithmic auditing has started to become 
similar in spirit to the well-established practice of bug bounties, 
where external hackers are paid for fnding vulnerabilities and bugs 
in released software [46]. These audits, modeled after intervention 
strategies in information security and fnance [62], have signif-
cantly increased public awareness of algorithmic accountability. 

An external audit of automated facial analysis systems exposed 
high disparities in error rates among darker-skinned women and 
lighter-skinned men [8], showing how structural racism and sexism 
can be encoded and reinforced through AI systems. [8] reveals 
interaction failures, in which the production and deployment of an 
AI system interacts with unjust social structures to contribute to 
biased predictions, as Safya Noble has described [54]. Such fndings 
demonstrate the need for companies to understand the social and 
power dynamics of their deployed systems’ environments, and 
record such insights to manage their products’ impact. 

2.2 AI Principles as Customized Ethical 
Standards 

According to Mittelstadt [49], at least 63 public-private initiatives 
have produced statements describing high-level principles, values 
and other tenets to guide the ethical development, deployment 
and governance of AI. Important values such as ensuring AI tech-
nologies are subject to human direction and control, and avoiding 
the creation or reinforcement of unfair bias, have been included 
in many organizations’ ethical charters. However, the AI industry 
lacks proven methods to translate principles into practice [49], and 
AI principles have been criticized for being vague and providing 
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little to no means of accountability [27, 82]. Nevertheless, such 
principles are becoming common methods to defne the ethical 
priorities of an organization and thus the operational goals for 
which to aim [34, 83]. Thus, in the absence of more formalized and 
universal standards, they can be used as a North Star to guide the 
evaluation of the development lifecycle, and internal audits can 
investigate alignment with declared AI principles prior to model 
deployment. We propose a framing of risk analyses centered on 
the failure to achieve AI principle objectives, outlining an audit 
practice that can begin translating ethical principles into practice. 

2.3 Audit Integrity and Procedural Justice 
Audit results are at times approached with skepticism since they are 
reliant on and vulnerable to human judgment. To establish the in-
tegrity of the audit itself as an independently valid result, the audit 
must adhere to the proper execution of an established audit pro-
cess. This is a repeatedly observed phenomenon in tax compliance 
auditing, where several international surveys of tax compliance 
demonstrate that a fxed and vetted tax audit methodology is one 
of the most efective strategies to convince companies to respect 
audit results and pay their full taxes [22, 53]. 

Procedural justice implies the legitimacy of an outcome due to 
the admission of a fair and thorough process. Establishing proce-
dural justice to increase compliance is thus a motivating factor 
for establishing common and robust frameworks through which 
independent audits can demonstrate adherence to standards. In ad-
dition, audit integrity is best established when auditors themselves 
live up to an ethical standard, vetted by adherence to an expected 
code of conduct or norm in how the audit is to be conducted. In 
fnance, for example, it became clear that any sense of dishonesty 
or non-transparency in audit methodology would lead audit targets 
to dismiss rather than act on results [66]. 

2.4 The Internal Audit 
External auditing, in which companies are accountable to a third 
party [62], are fundamentally limited by lack of access to internal 
processes at the audited organizations. Although external audits 
conducted by credible experts are less afected by organization-
internal considerations, external auditors can only access model 
outputs, for example by using an API [65]. Auditors do not have 
access to intermediate models or training data, which are often 
protected as trade secrets [9]. Internal auditors’ direct access to sys-
tems can thus help extend traditional external auditing paradigms 
by incorporating additional information typically unavailable for 
external evaluations to reveal previously unidentifable risks. 

The goals of an internal audit are similar to quality assurance, 
with the objective to enrich, update or validate the risk analysis 
for product deployment. Internal audits aim to evaluate how well 
the product candidate, once in real-world operation, will ft the 
expected system behaviour encoded in standards. 

A modifcation in objective from a post-deployment audit to 
pre-deployment audit applied throughout the development process 
enables proactive ethical intervention methods, rather than simply 
informing reactive measures only implementable after deployment, 
as is the case with a purely external approach. Because there is 
an increased level of system access in an internal audit, identifed 
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gaps in performance or processes can be mapped to sociotechnical 
considerations that should be addressed through joint eforts with 
product teams. As the audit results can lead to ambiguous conclu-
sions, it is critical to identify key stakeholders and decision makers 
who can drive appropriate responses to audit outcomes. 

Additionally, with an internal audit, because auditors are em-
ployees of the organization and communicate their fndings pri-
marily to an internal audience, there is opportunity to leverage 
these audit outcomes for recommendations of structural organiza-
tional changes needed to make the entire engineering development 
process auditable and aligned with ethical standards. Ultimately, 
internal audits complement external accountability, generating ar-
tifacts or transparent information [70] that third parties can use for 
external auditing, or even end-user communication. Internal audits 
can thus enable review and scrutiny from additional stakeholders, 
by enforcing transparency through stricter reporting requirements. 

3 LESSONS FROM AUDITING PRACTICES IN 
OTHER INDUSTRIES 

Improving the governance of artifcial intelligence development 
is intended to reduce the risks posed by new technology. While 
not without faults, safety-critical and regulated industries such as 
aerospace and medicine have long traditions of auditable processes 
and design controls that have dramatically improved safety [77, 81]. 

3.1 Aerospace 
Globally, there is one commercial airline accident per two million 
fights [63]. This remarkable safety record is the result of a joint and 
concerted efort over many years by aircraft and engine manufac-
turers, airlines, governments, regulatory bodies, and other industry 
stakeholders [63]. As modern avionic systems have increased in size 
and complexity (for example, the Boeing 787 software is estimated 
at 13 million lines of code [35]), the standard 1-in-1,000,000,000 
per use hour maximum failure probability for critical aerospace 
systems remains an underappreciated engineering marvel [19]. 

However, as the recent Boeing 737 MAX accidents indicate, safety 
is never fnished, and the qualitative impact of failures cannot be 
ignored—even one accident can impact the lives of many and is 
rightfully acknowledged as a catastrophic tragedy. Complex sys-
tems tend to drift toward unsafe conditions unless constant vigi-
lance is maintained [42]. It is the sum of the tiny probabilities of 
individual events that matters in complex systems—if this grows 
without bound, the probability of catastrophe goes to one. The 
Borel-Cantelli Lemmas are formalizations of this statistical phenom-
enon [13], which means that we can never be satisfed with safety 
standards. Additionally, standards can be compromised if compet-
ing business interests take precedence. Because the non-zero risk of 
failure grows over time, without continuous active measures being 
developed to mitigate risk, disaster becomes inevitable [29]. 

3.1.1 Design checklists. Checklists are simple tools for assisting 
designers in having a more informed view of important questions, 
edge cases and failures [30]. Checklists are widely used in aerospace 
for their proven ability to improve safety and designs. There are 
several cautions about using checklists during the development of 
complex software, such as the risk of blind application, the broader 
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context and nuanced interrelated concerns are not considered. How-
ever, a checklist can be benefcial. It is good practice to avoid yes/no 
questions to reduce the risk that the checklist becomes a box-ticking 
activity, for example by asking designers and engineers to describe 
their processes for assessing ethical risk. Checklist use should also 
be related to real-world failures and higher-level system hazards. 

3.1.2 Traceability. Another key concept from aerospace and safety-
critical software engineering is traceability—which is concerned 
with the relationships between product requirements, their sources 
and system design. This practice is familiar to the software industry 
in requirements engineering [2]. However, in AI research, it can 
often be difcult to trace the provenance of large datasets or to inter-
pret the meaning of model weights—to say nothing of the challenge 
of understanding how these might relate to system requirements. 
Additionally, as the complexity of sociotechnical systems is rapidly 
increasing, and as the speed and complexity of large-scale artifcial 
intelligence systems increase, new approaches are necessary to 
understand risk [42]. 

3.1.3 Failure Modes and Efects Analysis. Finally, a standard tool in 
safety engineering is a Failure Modes and Efects Analysis (FMEA), 
methodical and systematic risk management approach that exam-
ines a proposed design or technology for foreseeable failures [72]. 
The main purpose of a FMEA is to defne, identify and eliminate 
potential failures or problems in diferent products, designs, sys-
tems and services. Prior to conducting a FMEA, known issues with 
a proposed technology should be thoroughly mapped through a 
literature review and by collecting and documenting the experi-
ences of the product designers, engineers and managers. Further, 
the risk exercise is based on known issues with relevant datasets 
and models, information that can be gathered from interviews and 
from extant technical documentation. 

FMEAs can help designers improve or upgrade their products to 
reduce risk of failure. They can also help decision makers formulate 
corresponding preventive measures or improve reactive strategies 
in the event of post-launch failure. FMEAs are widely used in many 
felds including aerospace, chemical engineering, design, mechani-
cal engineering and medical devices. To our knowledge, however, 
the FMEA method has not been applied to examine ethical risks in 
production-scale artifcial intelligence models or products. 

3.2 Medical devices 
Internal and external quality assurance audits are a daily occurrence 
in the pharmaceutical and medical device industry. Audit document 
trails are as important as the drug products and devices themselves. 
The history of quality assurance audits in medical devices dates 
from several medical disasters in which devices, such as infusion 
pumps and autoinjectors, failed or were used improperly [80]. 

3.2.1 Design Controls. For medical devices, the stages of prod-
uct development are strictly defned. In fact, federal law (Code of 
Federal Regulations Title 21) mandates that medical-device mak-
ers establish and maintain “design control” procedures to ensure 
that design requirements are met and designs and development 
processes are auditable. Practically speaking, design controls are a 
documented method of ensuring that the end product matches the 
intended use, and that potential risks from using the technology 

have been anticipated and mitigated [77]. The purpose is to ensure 
that anticipated risks related to the use of technology are driven 
down to the lowest degree that is reasonably practicable. 

3.2.2 Intended Use. Medical-device makers must maintain proce-
dures to ensure that design requirements meet the “intended use” 
of the device. The intended use of a “device” (or, increasingly in 
medicine, an algorithm—see [60] for more) determines the level of 
design control required: for example, a tongue depressor (a simple 
piece of wood) is the lowest class of risk (Class I), while a deep 
brain implant would be the highest (Class III). The intended use 
of a tongue depressor could be “to displace the tongue to facilitate 
examination of the surrounding organs and tissues”, diferentiating 
a tongue depressor from a Popsicle stick. This may be important 
when considering an algorithm that can be used to identify cats or 
to identify tumors; depending on its intended use, the same algo-
rithm might have drastically diferent risk profles, and additional 
risks arise from unintended uses of the technology. 

3.2.3 Design History File. For products classifed as medical de-
vices, at every stage of the development process, device makers 
must document the design input, output, review, verifcation, vali-
dation, transfer and changes—the design control process (section 
3.2.1). Evidence that medical device designers and manufacturers 
have followed design controls must be kept in a design history 
fle (DHF), which must be an accurate representation and docu-
mentation of the product and its development process. Included 
in the DHF is an extensive risk assessment and hazard analysis, 
which must be continuously updated as new risks are discovered. 
Companies also proactively maintain “post-market surveillance” 
for any issues that may arise with safety of a medical device. 

3.2.4 Structural Vulnerability. In medicine there is a deep acknowl-
edgement of socially determinant factors in healthcare access and 
efectiveness, and an awareness of the social biases infuencing 
the dynamic of prescriptions and treatments. This widespread ac-
knowledgement led to the framework of operationalizing structural 
vulnerability in healthcare contexts, and efectively the design of 
an assessment tool to record the anticipated social conditions sur-
rounding a particular remedy or medical recommendation [61]. 
Artifcial intelligence models are equally subject to social infuence 
and social impact, and undergoing such assessments on more holis-
tic and population- or environment-based considerations is relevant 
to algorithmic auditing. 

3.3 Finance 
As automated accounting systems started to appear in the 1950s, 
corporate auditors continued to rely on manual procedures to audit 
“around the computer”. In the 1970s, the Equity Funding Corpora-
tion scandal and the passage of the Foreign Corrupt Practices Act 
spurred companies to more thoroughly integrate internal controls 
throughout their accounting systems. This heightened the need to 
audit these systems directly. The 2002 Sarbanes-Oxley Act intro-
duced sweeping changes to the profession in demanding greater 
focus on fnancial reporting and fraud detection [10]. 

Financial auditing had to play catch-up as the complexity and 
automation of fnancial business practices became too unwieldy to 
manage manually. Stakeholders in large companies and government 
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regulators desired a way to hold companies accountable. Concerns 
among regulators and shareholders that the managers in large 
fnancial frms would squander profts from newly created fnancial 
instruments prompted the development of fnancial audits [74]. 

Additionally, as fnancial transactions and markets became more 
automated, abstract and opaque, threats to social and economic val-
ues were answered increasingly with audits. But fnancial auditing 
lagged behind the process of technology-enabled fnancialization 
of markets and frms. 

3.3.1 Audit Infrastructure. In general, internal fnancial audits seek 
assurance that the organization has a formal governance process 
that is operating as intended: values and goals are established and 
communicated, the accomplishment of goals is monitored, account-
ability is ensured and values are preserved. Further, internal audits 
seek to fnd out whether signifcant risks within the organization 
are being managed and controlled to an acceptable level [71]. 

Internal fnancial auditors typically have unfettered access to 
necessary information, people, records and outsourced operations 
across the organization. IIA Performance Standard 2300, Performing 
the Engagement [55], states that internal auditors should identify, 
analyze, evaluate and record sufcient information to achieve the 
audit objectives. The head of internal audit determines how internal 
auditors carry out their work and the level of evidence required to 
support their conclusions. 

3.4 Discussion and Challenges 
The lessons from other industries above are a useful guide toward 
building internal accountability to society as a stakeholder. Yet, 
there are many novel and unique aspects of artifcial intelligence 
development that present urgent research challenges to overcome. 

Current software development practice in general, and arti-
fcial intelligence development in particular, does not typically 
follow the waterfall or verifcation-and-validation approach [16]. 
These approaches are still used, in combination with agile methods, 
in the above-mentioned industries because they are much more 
documentation-oriented, auditable and requirements-driven. Agile 
artifcial intelligence development is much faster and iterative, and 
thus presents a challenge to auditability. However, applying agile 
methodologies to internal audits themselves is a current topic of 
research in the internal audit profession.2 

Most internal audit functions outside of heavily regulated indus-
tries tend to take a risk-based approach. They work with product 
teams to ask "what could go wrong" at each step of a process and 
use that to build a risk register [59]. This allows risks to rise to 
the surface in a way that is informed by the people who know 
these processes and systems the best. Internal audits can also lever-
age relevant experts from within the company to facilitate such 
discussions and provide additional insight on potential risks [3]. 

Large-scale production AI systems are extraordinarily complex, 
and a critical line of future research relates to addressing the inter-
action of highly complex coupled sociotechnical systems. Moreover, 
there is a dynamic complex interaction between users as sources of 
data, data collection, and model training and updating. Additionally, 
governance processes based solely on risk have been criticized for 
2https://deloitte.wsj.com/riskandcompliance/2018/08/06/mind-over-matter-
implementing-agile-internal-audit/ 
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being unable to anticipate the most profound impacts from techno-
logical innovation, such as the fnancial crisis in 2008, in which big 
data and algorithms played a large role [52, 54, 57]. 

With artifcial intelligence systems it can be difcult to trace 
model output back to requirements because these may not be ex-
plicitly documented, and issues may only become apparent once 
systems are released. However, from an ethical and moral perspec-
tive it is incumbent on producers of artifcial intelligence systems 
to anticipate ethics-related failures before launch. However, as [58] 
and [31] point out, the design, prototyping and maintenance of 
AI systems raises many unique challenges not commonly faced 
with other kinds of intelligent systems or computing systems more 
broadly. For example, data entanglement results from the fact that 
artifcial intelligence is a tool that mixes data sources together. As 
Scully et al. point out, artifcial intelligence models create entangle-
ment and make the isolation of improvements efectively impossible 
[67], which they call Change Anything Change Everything. We sug-
gest that by having explicit documentation about the purpose, data, 
and model space, potential hazards could be identifed earlier in 
the development process. 

Selbst and Barocas argue that “one must seek explanations of 
the process behind a model‘s development, not just explanations 
of the model itself” [68]. As a relatively young community focused 
on fairness, accountability, and transparency in AI, we have some 
indication of the system culture requirements needed to normalize, 
for example, an adequately thorough documentation procedure and 
guidelines [24, 48]. Still, we lack the formalization of a standard 
model development template or practice, or process guidelines for 
when and in which contexts it is appropriate to implement certain 
recommendations. In these cases, internal auditors can work with 
engineering teams to construct the missing documentation to assess 
practices against the scope of the audit. Improving documentation 
can then be a remediation for future work. 

Also, as AI is at times considered a “general purpose technology” 
with multiple and dual uses [78], the lack of reliable standardization 
poses signifcant challenges to governance eforts. This challenge 
is compounded by increasing customization and variability of what 
an AI product development lifecycle looks like depending on the 
anticipated context of deployment or industry. 

We thus combine learnings from prior practice in adjacent in-
dustries while recognizing the uniqueness of the commercial AI 
industry to identify key opportunities for internal auditing in our 
specifc context. We do so in a way that is appropriate to the re-
quirements of an AI system. 

4 SMACTR: AN INTERNAL AUDIT 
FRAMEWORK 

We now outline the components of an initial internal audit frame-
work, which can be framed as encompassing fve distinct stages— 
Scoping, Mapping, Artifact Collection, Testing and Refection (SMACTR)— 
all of which have their own set of documentation requirements and 
account for a diferent level of the analysis of a system. Figure 2 
illustrates the full set of artifacts recommended for each stage. 

To illustrate the utility of this framework, we contextualize our 
descriptions with the hypothetical example of Company X Inc., 

https://2https://deloitte.wsj.com/riskandcompliance/2018/08/06/mind-over-matter
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Figure 2: Overview of Internal Audit Framework. Gray indicates a process, and the colored sections represent documents. 
Documents in orange are produced by the auditors, blue documents are produced by the engineering and product teams and 
green outputs are jointly developed. 

a large multinational software engineering consulting frm, spe-
cializing in developing custom AI solutions for a diverse range of 
clients. We imagine this company has designated fve AI princi-
ples, paraphrased from the most commonly identifed AI principles 
in a current online English survey [34]–"Transparency", "Justice, 
Fariness & Non-Discrimination", "Safety & Non-Malefcence", "Re-
sponsibility & Accountability" and "Privacy". We also assume that 
the corporate structure of Company X is typical of any technical 
consultancy, and design our stakeholder map by this assumption. 

Company X has decided to pilot the SMACTR internal audit 
framework to fulfll a corporate mandate towards responsible in-
novation practice, accommodate external accountability and op-
erationalize internal consistency with respect to its identifed AI 
principles. The fctional company thus pilots the audit framework 
on two hypothetical client projects. 

The frst (hypothetical) client wishes to develop a child abuse 
screening tool similar to that of the real cases extensively studied 
and reported on [11, 14, 15, 21, 25, 36]. This complex case inter-
sects heavily with applications in high-risk scenarios with dire 
consequences. This scenario demonstrates how, for algorithms in-
terfacing with high-risk contexts, a structured framework can allow 
for the careful consideration of all the possibilities and risks with 
taking on the project, and the extent of its understood social impact. 

The second invented client is Happy-Go-Lucky, Inc., an imag-
ined photo service company looking for a smile detection algorithm 
to automatically trigger the cameras in their installed physical 
photo booths. In this scenario, the worst case is a lack of customer 
satisfaction—the stakes are low and the situation seems relatively 
straightforward. This scenario demonstrates how in even seem-
ingly simple and benign cases, ethical consideration of system 
deployment can reveal underlying issues to be addressed prior to 
deployment, especially when we contextualize the model within 
the setting of the product and deployment environment. 

An end-to-end worked example of the audit framework is avail-
able as supplementary material to this paper for the Happy-Go-
Lucky, Inc. client case. This includes demonstrative templates of 
all recommended documentation, with the exception of specifc 
process fles such as any experimental results, interview transcripts, 

a design history fle and the summary report. Workable templates 
can also be accessed as an online resource here. 

4.1 The Governance Process 
To design our audit procedure, we suggest complementing formal 
risk assessment methodologies with ideas from responsible innova-
tion, which stresses four key dimensions: anticipation, refexivity, 
inclusion and responsiveness [73], as well as system-theoretic con-
cepts that help grapple with increasing complexity and coupling 
of artifcial intelligence systems with the external world [42]. Risk-
based assessments can be limited in their ability to capture social 
and ethical stakes, and they should be complemented by anticipa-
tory questions such as, “what if...?”. The aim is to increase ethical 
foresight through systematic thinking about the larger sociotechni-
cal system in which a product will be deployed [50]. There are also 
intersections between this framework and just efective product 
development theory [5], as many of the components of audit de-
sign refocus the product development process to prioritize the user 
and their ultimate well-being, resulting in a more efective product 
performance outcome. 

At a minimum, the internal audit process should enable critical 
refections on the potential impact of a system, serving as internal 
education and training on ethical awareness in addition to leav-
ing what we refer to as a “transparency trail” of documentation at 
each step of the development cycle (see Figure 2). To shift the pro-
cess into an actionable mechanism for accountability, we present a 
validated and transparently outlined procedure that auditors can 
commit to. The thoroughness of our described process will hope-
fully engage the trust of audit targets to act on and acknowledge 
post-audit recommendations for engineering practices in alignment 
with prescribed AI principles. 

This process primarily addresses how to conduct internal audits, 
providing guidance for those that have already deemed an audit 
necessary but would like to further defne the scope and execution 
details. Though not covered here, an equally important process is 
determining what systems to audit and why. Each industry has a 
way to judge what requires a full audit, but that process is discre-
tionary and dependent on a range of contextual factors pertinent to 
the industry, the organization, audit team resourcing, and the case 
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at hand. Risk prioritization and the necessary variance in scrutiny 
is a separately interesting and rich research topic on its own. The 
process outlined below can be applied in full or in a lighter-weight 
formulation, depending on the level of assessment desired. 

4.2 The Scoping Stage 
For both clients, a product or request document is provided to spec-
ify the requirements and expectations of the product or feature. 
The goal of the scoping stage is to clarify the objective of the audit 
by reviewing the motivations and intended impact of the inves-
tigated system, and confrming the principles and values meant 
to guide product development. This is the stage in which the risk 
analysis begins by mapping out intended use cases and identify-
ing analogous deployments either within the organization or from 
competitors or adjacent industries. The goal is to anticipate areas 
to investigate as potential sources of harm and social impact. At 
this stage, interaction with the system should be minimal. 

In the case of the smile-triggered phone booth, a smile detection 
model is required, providing a simple product, with not a broad 
scope of considerations as the potential for harm does not go much 
beyond inconvenience or customer exclusion and dissatisfaction. 
For the child abuse detection product, there are many more ap-
proaches to solving the issue and many more options for how the 
model interacts with the broader system. The use case itself in-
volves many ethical considerations, as an inefective model may 
result in serious consequences like death or family separation. 

The key artifacts developed by the auditors from this stage in-
clude an ethical review of the system use case and a social impact 
assessment. Pre-requisite documents from the product and engi-
neering team should be a declaration or confrmation statement of 
ethical objectives, standards and AI principles. The product team 
should also provide a Product Requirements Document (PRD), or 
project proposal from the initial planning of the audited product. 

4.2.1 Artifact: Ethical Review of System Use Case. When a potential 
AI system is in the development pipeline, it should be reviewed 
with a series of questions that frst and foremost check to see, at 
a high level, whether the technology aligns with a set of ethical 
values or principles. This can take the form of an ethical review that 
considers the technology from a responsible innovation perspective 
by asking who is likely to be impacted and how. 

Importantly, we stress standpoint diversity in this process. Al-
gorithm development implicitly encodes developer assump-
tions that they may not be aware of, including ethical and 
political values. Thus it is not always possible for individual tech-
nology workers to identify or assess their own biases or faulty 
assumptions [33]. For this reason, a critical range of viewpoints is 
included in the review process. The essential inclusion of indepen-
dent domain experts and marginalized groups in the ethical review 
process "has the potential to lead to more rigorous critical refection 
because their experiences will often be precisely those that are most 
needed in identifying problematic background assumptions and 
revealing limitations with research questions, models, or method-
ologies" [33]. Another method to elicit implicit biases or motivated 
cognition [40] is to ask people to refect on their preliminary assess-
ment and then ask whether they might have reason to regret the 
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action later on. This can shed light on how our position in society 
biases our assumptions and ways of knowing [18]. 

An internal ethics review board that includes a diversity of voices 
should review proposed projects and document its views. Internal 
ethics review boards are common in biomedical research, and the 
purpose of these boards is to ensure that the rights, safety, and 
well-being of all human subjects involved in medical research are 
protected [56]. Similarly, the purpose of an ethics review board 
for AI systems includes safeguarding human rights, safety, and 
well-being of those potentially impacted. 

4.2.2 Artifact: Social Impact Assessment. A social impact assess-
ment should inform the ethical review. Social impact assessments 
are commonly defned as a method to analyze and mitigate the 
unintended social consequences, both positive and negative, that 
occur when a new development, program, or policy engages with 
human populations and communities [79]. In it, we describe how 
the use of an artifcial intelligence system might change people’s 
ways of life, their culture, their community, their political systems, 
their environment, their health and well-being, their personal and 
property rights, and their experiences (positive or negative) [79]. 

The social impact assessment includes two primary steps: an 
assessment of the severity of the risks, and an identifcation of the 
relevant social, economic, and cultural impacts and harms that an 
artifcial intelligence system applied in context may create. The 
severity of risk is the degree to which the specifc context of the 
use case is assessed to determine the degree in which potential 
harms may be amplifed. The severity assessment proceeds from 
the analysis of impacts and harms to give a sense of the relative 
severity of the harms and impacts depending on the sensitivity, 
constraints, and context of the use case. 

4.3 The Mapping Stage 
The mapping stage is not a step in which testing is actively done, 
but rather a review of what is already in place and the perspectives 
involved in the audited system. This is also the time to map internal 
stakeholders, identify key collaborators for the execution of the 
audit, and orchestrate the appropriate stakeholder buy-in required 
for execution. At this stage, the FMEA (Section 3.1.3) should begin 
and risks should be prioritized for later testing. 

As Company X is a consultancy, this stage mainly requires iden-
tifying the stakeholders across product and engineering teams an-
chored to this particular client project, and recording the nature of 
their involvement and contribution. This enables an internal record 
of individual accountability with respect to participation towards 
the fnal outcome, and enables the trace of relevant contacts for 
future inquiry. 

For the child abuse detection algorithm, the initial identifcation 
of failure modes reveals the high stakes of the application, and 
immediate threats to the "Safety & Non-Malefcence" principle. False 
positives overwhelm staf and may lead to the separation of families 
that could have recovered. False negatives may result in a dead or 
injured child that could have been rescued. For the smile detector, 
failures disproportionately impact those with alternative emotional 
expressions—those with autism, diferent cultural norms on the 
formality of smiling, or diferent expectations for the photograph 
who are then excluded from the product by design. 
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The key artifacts from this stage include a stakeholder map and 
collaborator contact list, a system map of the product development 
lifecycle, and the engineering system overview, especially in cases 
where multiple models inform the end product. Additionally, this 
stage includes a design history fle review of all existing documen-
tation of the development process or historical artifacts on past 
versions of the product. Finally, it includes a report or interview 
transcripts on key fndings from internal ethnographic feldwork 
involving the stakeholders and engineers. 

4.3.1 Artifact: Stakeholder Map. Who was involved in the system 
audit and collaborators in the execution of the audit should be out-
lined. Clarifying participant dynamics ensures a more transparent 
representation of the provided information, giving further context 
to the intended interpretation of the fnal audit report. 

4.3.2 Artifact: Ethnographic Field Study. As Leveson points out, 
bottom-up decentralized decision making can lead to failures in 
complex sociotechnical systems [42]. Each local decision may be 
correct in the limited context in which it was made, but can lead 
to problems when these decisions and organizational behaviors 
interact. With modern large-scale artifcial intelligence projects and 
API development, it can be difcult to gain a shared understanding 
at the right level of system description to understand how local 
decisions, such as the choice of dataset or model architecture, will 
impact fnal system behavior. 

Therefore, ethnography-inspired feldwork methodology based 
on how audits are conducted in other industries, such as fnance 
[74] and healthcare [64] is useful to get a deeper and qualitative 
understanding of the engineering and product development pro-
cess. As in internal fnancial auditing, access to key people in the 
organization is important. This access involves semi-structured 
interviews with a range of individuals close to the development 
process and documentation gathering to gain an understanding of 
possible gaps that need to be examined more closely. 

Traditional metrics for artifcial intelligence like loss may con-
ceal fairness concerns, social impact risks or abstraction errors [69]. 
A key challenge is to assess how the numerical metrics specifed 
in the design of an artifcial intelligence system refect or conform 
with these values. Metrics and measurement are important parts 
of the auditing process, but should not become aims and ends in 
themselves when weighing whether an algorithmic system under 
audit is ethically acceptable for release. Taking metrics measured in 
isolation risks recapitulating the abstraction error that [69] point 
out, "To treat fairness and justice as terms that have meaningful 
application to technology separate from a social context is there-
fore to make a category error, or as we posit here, an abstraction 
error." What we consider data is already an interpretation, highly 
subjective and contested [23]. Metrics must be understood in re-
lation to the engineering context in which they were developed 
and the social context into which they will be deployed. During the 
interviews, auditors should capture and pay attention to what falls 
outside the measurements and metrics, and to render explicit the 
assumptions and values the metrics apprehend [75]. For example, 
the decision about whether to prioritize the false positive rate over 
false negative rate (precision/recall) is a question about values and 
cannot be answered without stating the values of the organization, 
team or even engineer within the given development context. 

4.4 The Artifact Collection Stage 
Note that the collection of these artifacts advances adherence to 
the declared AI principles of the organization on "Responsibility & 
Accountability" and "Transparency". 

In this stage, we identify and collect all the required documenta-
tion from the product development process, in order to prioritize 
opportunities for testing. Often this implies a record of data and 
model dynamics though application-based systems can include 
other product development artifacts such as design documents and 
reviews, in addition to systems architecture diagrams and other 
implementation planning documents and retrospectives. 

At times documentation can be distributed across diferent teams 
and stakeholders, or is missing altogether. In certain cases, the au-
ditor is in a position to enforce retroactive documentation require-
ments on the product team, or craft documents themselves. 

The model card for the smile detection model is the template 
model card from the original paper [48]. A hypothetical datasheet 
for this system is flled out using studies on the CelebA dataset, 
with which the smile detector is built [44, 47]. In the model card, we 
identify potential for misuse if smiling is confused for positive afect. 
From the datasheet for the CelebA dataset, we see that although the 
provided binary gender labels seem balanced for this dataset (58.1% 
female, 42% male), other demographic details are quite skewed 
(77.8% aged 0-45, 22.1% aged over 46 and 14.2% lighter-skinned, 
85.8% darker-skinned)[47]. 

The key artifact from auditors during this stage is the audit check-
list, one method of verifying that all documentation pre-requisites 
are provided in order to commence the audit. Those pre-requisites 
can include model and data transparency documentation. 

4.4.1 Artifact: Design Checklist. This checklist is a method of tak-
ing inventory of all the expected documentation to have been gen-
erated from the product development cycle. It ensures that the full 
scope of expected product processes and that the corresponding 
documentation required to be completed before the audit review 
can begin are fnished. This is also a procedural evaluation of the 
development process for the system, to ensure that appropriate 
actions were pursued throughout system development ahead of the 
evaluation of the fnal system outcome. 

4.4.2 Artifacts: Datasheets and Model Cards. Two recent standards 
can be leveraged to create auditable documentation, model cards 
and datasheets [24, 48]. Both model cards and datasheets are im-
portant tools toward making algorithmic development and the 
algorithms themselves more auditable, with the aim of anticipating 
risks and harms with using artifcial intelligence systems. Ideally, 
these artifacts should be developed and/or collected by product 
stakeholders during the course of system development. 

To clarify the intended use cases of artifcial intelligence models 
and minimize their usage in contexts for which they are not well 
suited, Mitchell et al. recommend that released models be accompa-
nied by documentation detailing their performance characteristics 
[48], called a model card. This should include information about 
how the model was built, what assumptions were made during 
development, and what type of model behavior might be experi-
enced by diferent cultural, demographic or phenotypic groups. A 
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model card is also extremely useful for internal development pur-
poses to make clear to stakeholders details about trained models 
that are included in larger software pipelines, which are parts of 
internal organizational dynamics, which are then parts of larger 
sociotechnical logics and processes. A robust model card is key to 
documenting the intended use of the model as well as information 
about the evaluation data, model scope and risks, and what might 
be afecting model performance. 

Model cards are intended to complement "Datasheets for Datasets" 
[24]. Datasheets for machine learning datasets are derived by anal-
ogy from the electronics hardware industry, where a datasheet for 
an electronics component describes its operating characteristics, 
test results, and recommended uses. A critical part of the datasheet 
covers the data collection process. This set of questions are intended 
to provide consumers of the dataset with the information they need 
to make informed decisions about using the dataset: what mecha-
nisms or procedures were used to collect the data? Was any ethical 
review process conducted? Does the dataset relate to people? 

This documentation feeds into the auditors’ assessment process. 

4.5 The Testing Stage 
This stage is where the majority of the auditing team’s testing 
activity is done—when the auditors execute a series of tests to gauge 
the compliance of the system with the prioritized ethical values of 
the organization. Auditors engage with the system in various ways, 
and produce a series of artifacts to demonstrate the performance of 
the analyzed system at the time of the audit. Additionally, auditors 
review the documentation collected from the previous stage and 
begin to make assessments of the likelihood of system failures to 
comply with declared principles. 

High variability in approach is likely during this stage, as the 
tests that need to be executed change dramatically depending on 
organizational and system context. Testing should be based on a 
risk prioritization from the FMEA. 

For the smile detector, we might employ counterfactual adver-
sarial examples designed to confuse the model and fnd problematic 
failure modes derived from the FMEA. For the child prediction 
model, we test performance on a selection of diverse user profles. 
These profles can also be treated for variables that correlate with 
vulnerable groups to test whether the model has learned biased 
associations with race or SES. 

For the ethical risk analysis chart, we look at the principles and 
realize that there are immediate risks to the "Privacy" principle— 
with one case involving juvenile data, which is sensitive, and the 
other involving face data, a biometric. This is also when it becomes 
clear that in the smiling booth case, there is disproportionate per-
formance for certain underrepresented user subgroups, thus jeop-
ardizing the "Justice, Fariness & Non-Discrimination" principle. 

The main artifacts from this stage of the auditing process are 
the results of tests such as adversarial probing of the system and 
an ethical risk analysis chart. 

4.5.1 Artifact: Adversarial Testing . Adversarial testing is a common 
approach to fnding vulnerabilities in both pre-release and post-
launch technology, for example in privacy and security testing [6]. 
In general, adversarial testing attempts to simulate what a hostile 
actor might do to gain access to a system, or to push the limits of 
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the system into edge case or unstable behavior to elicit very-low 
probability but high-severity failures. 

In this process, direct non-statistical testing uses tailored inputs 
to the model to see if they result in undesirable outputs. These 
inputs can be motivated by an intersectional analysis, for exam-
ple where an ML system might produce unfair outputs based on 
demographic and phenotypic groups that might combine in non-
additive ways to produce harm, or over time recapitulate harmful 
stereotypes or reinforce unjust social dynamics (for example, in 
the form of opportunity denial). This is distinct from adversarially 
attacking a model with human-imperceptible pixel manipulations 
to trick the model into misidentifying previously learned outputs 
[28], but these approaches can be complementary. This approach 
is more generally defned—encompassing a range of input options 
to try in an active attempt to fool the system and incite identifed 
failure modes from the FMEA. 

Internal adversarial testing prior to launch can reveal unexpected 
product failures before they can impact the real world. Addition-
ally, proactive adversarial testing of already-launched products can 
be a best practice for lifecycle management of released systems. 
The FMEA should be updated with these results, and the relative 
changes to risks assessed. 

4.5.2 Artifact: Ethical Risk Analysis Chart. The ethical risk analysis 
chart considers the combination of the likelihood of a failure and 
the severity of a failure to defne the importance of the risk. Highly 
likely and dangerous risks are considered the most high-priority 
threats. Each risk is assigned a severity indication of "high", "mid" 
and "low" depending on their combination of these features. 

Failure likelihood is estimated by considering the occurrence of 
certain failures during the adversarial testing of the system and the 
severity of the risk is identifed in earlier stages, from informative 
processes such as the social impact assessment and ethnographic 
interviews. 

4.6 The Refection Stage 
This phase of the audit is the more refective stage, when the results 
of the tests at the execution stage are analyzed in juxtaposition 
with the ethical expectations clarifed in the audit scoping. Auditors 
update and formalize the fnal risk analysis in the context of test 
results, outlining specifc principles that may be jeopardized by the 
AI system upon deployment. This phase will refect on product de-
cisions and design recommendations that could be made following 
the audit results. 

Additionally, key artifacts at this stage may include a mitigation 
plan or action plan, jointly developed by the audit and engineering 
teams, that outlines prioritized risks and test failures that the engi-
neering team is in a position to mitigate for future deployments or 
for a future version of the audited system. 

For the smile detection algorithm, the decision could be to train 
a new version of the model on more diverse data before considering 
deployment, and add more samples of underrepresented popula-
tions in CelebA to the training data. It could be decided that the 
use case does not necessarily defne afect, but treats smiling as a 
favourable photo pose. Design choices for other parts of the product 
outside the model should be considered—for instance, an opt-in 
functionality with user permissions required on the screen before 
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applying the model-controlled function, and the default being that 
the model-controlled trigger is disabled. There could also be an 
included disclaimer on privacy, assuring users of safe practices for 
face data storage and consent. Once these conditions are met, Com-
pany X could be confdent to greenlight developing this product 
for the client. 

For the child abuse detection model—this is a more complex 
decision. Given the ethical considerations involved, the project 
may be stalled or even cancelled, requiring further inquiry into the 
ethics of the use case, and the capability of the team to complete 
the mitigation plan required to deploy an algorithm in such a high 
risk scenario. 

4.6.1 Artifact: Algorithmic Use-related Risk Analysis and FMEA. 
The risk analysis should be informed by the social impact assess-
ment and known issues with similar models. Following Leveson’s 
work on safety engineering [42], we stress that careful attention 
must be paid to the distinction between the designers’ mental mod-
els of the artifcial intelligence system and the user’s mental model. 
The designers’ mental models are an idealization of the artifcial 
intelligence system before the model is released. Signifcant difer-
ences exist between this ideal model and how the actual system will 
behave or be used once deployed. This may be due to many factors, 
such as distributional drift [41] where the training and test set dis-
tributions difer from the real-world distribution, or intentional or 
unintentional misuse of the model for purposes other than those for 
which it was designed. Reasonable and foreseeable misuse of the 
model should be anticipated by the designer. Therefore, the user’s 
mental model of the system should be anticipated and taken into 
consideration. Large gaps between the intended and actual uses of 
algorithms have been found in contexts such as criminal justice 
and web journalism [12]. 

This adds complexity to anticipated hazards and risks, neverthe-
less these should be documented where possible. Christin points 
out “the importance of studying the practices, uses, and implemen-
tations surrounding algorithmic technologies. Intellectually, this 
involves establishing new exchanges between literatures that may 
not usually interact, such as critical data studies, the sociology of 
work, and organizational analysis”. We propose that known use-
related issues with deployed systems be taken into account during 
the design stage. The format of the risk analysis can be variable 
depending on context, and there are many valuable templates to be 
found in Failure Modes and Efects Analysis (Section 3.1.3) framing 
and other risk analysis tools in fnance and medical deployments. 

4.6.2 Artifact: Remediation and Risk Mitigation Plan. After the au-
dit is completed and fndings are presented to the leadership and 
product teams, it is important to develop a plan for remediating 
these problems. The goal is to drive down the risk of ethical con-
cerns or potential negative social impacts to the extent reasonably 
practicable. This plan can be reviewed by the audit team and lead-
ership to better inform deployment decisions. 

For the concerns raised in any audit against ethical values, a 
technical team will want to know: what is the threshold for ac-
ceptable performance? If auditors discover, for example, unequal 
classifer performance across subgroups, how close to parity is nec-
essary to say the classifer is acceptable? In safety engineering, a 
risk threshold is usually defned under which the risk is considered 

tolerable. Though a challenging problem, similar standards could 
be established and developed in the ethics space as well. 

4.6.3 Artifact: Algorithmic Design History File. Inspired by the con-
cept of the design history fle from the medical device industry [77], 
we propose an algorithmic design history fle (ADHF) which would 
collect all the documentation from the activities outlined above 
related to the development of the algorithm. It should point to the 
documents necessary to demonstrate that the product or model 
was developed in accordance with an organization’s ethical values, 
and that the benefts of the product outweigh any risks identifed 
in the risk analysis process. 

This design history fle would form the basis of the fnal audit 
report, which is a written evaluation by the organization’s audit 
team. The ADHF should assist with an audit trail, enabling the 
reconstruction of key decisions and events during the development 
of the product. The algorithmic report would then be a distillation 
and summary of the ADHF. 

4.6.4 Artifact: Algorithmic Audit Summary Report. The report ag-
gregates all key audit artifacts, technical analyses and documenta-
tion, putting this in one accessible location for review. This audit 
report should be compared qualitatively and quantitatively to the 
expectations outlined in the given ethical objectives and any corre-
sponding engineering requirements. 

5 LIMITATIONS OF INTERNAL AUDITS 
Internal auditors necessarily share an organizational interest with 
the target of the audit. While it is important to maintain an indepen-
dent and objective viewpoint during the execution of an audit, we 
awknowledge that this is challenging. The audit is never isolated 
from the practices and people conducting the audit, just as artif-
cial intelligence systems are not independent of their developers 
or of the larger sociotechnical system. Audits are not unifed or 
monolithic processes with an objective "view from nowhere", but 
must be understood as a "patchwork of coupled procedures, tools 
and calculative processes" [74]. To avoid audits becoming simply 
acts of reputation management for an organization, the auditors 
should be mindful of their own and the organizations’ biases and 
viewpoints. Although long-standing internal auditing practices for 
quality assurance in the fnancial, aviation, chemical, food, and phar-
maceutical industries have been shown to be an efective means of 
controlling risk in these industries [76], the regulatory dynamics in 
these industries suggest that internal audits are only one important 
aspect of a broader system of required quality checks and balances. 

6 CONCLUSION 
AI has the potential to beneft the whole of society, however there 
is currently an inequitable risk distribution such that those who 
already face patterns of structural vulnerability or bias dispropor-
tionately bear the costs and harms of many of these systems. Fair-
ness, justice and ethics require that those bearing these risks are 
given due attention and that organizations that build and deploy 
artifcial intelligence systems internalize and proactively address 
these social risks as well, being seriously held to account for system 
compliance to declared ethical principles. 
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