WaterRA ColoSSoS Project

Inter-laboratory Study: SARS-CoV-2 in Wastewater

Dr Kate Griffiths
Bioanalysis Section, Australian National Measurement Institute

14th June 2021
Wastewater surveillance for SARS-CoV-2

• Phase 1: Method development
 • Multiple labs developed methods independently, using a range of materials for validation and calibration
 • Recovery methods: electronegative membranes, ultrafiltration, PEG, ultracentrifugation
 • RNA extraction methods: range of kits available
 • RT-qPCR kits, mastermixes, 1-step or 2-step and assays
 • Choice of calibrant / reporting units

• Phase 2: Compare method performance between different service providers
 • Limit of detection (LOD) / yield
 • Reproducibility
 • Quantitative accuracy

• Participants:
 • 11 in Australia and 1 in New Zealand
 • 2 water utilities, 3 Government labs, 2 commercial labs, 5 University labs;
Plan for the ColoSSoS inter-laboratory study

• Study materials provided:
 – 10 x 50 mL aliquots of domestic wastewater (grab sample, untreated)
 – 2 x frozen aliquots of inactivated virus (‘V1’ and ‘V2’) for spiking
 – 3 x sets of calibrant CRM (6 dilutions prepared from inactivated virus)

We were *very fortunate* to have domestic wastewater expected to be free of the virus and gamma-irradiated SARS-CoV-2 provided by the Victorian Infectious Diseases Reference Laboratory (VIDRL) – both game changers.
NMI Calibrant CRM

- The NMI calibrant:
 - Prepared from gamma-irradiated SARS-CoV-2 virus supplied by VIDRL
 - 6-point dilution series: 560, 245, 62, 18.5, 6.5 and 2.1 copies per 5 µL
 - Quantified in “copy number concentration of SARS-CoV-2 genome equivalents”
 - Quantified using RT-dPCR
 - Measurement uncertainty includes reverse transcription efficiency for conversion of RNA to DNA, using isotope dilution mass spectrometry (IDMS) data
 - Provides traceability to the International System of Units (SI mole)

- 5 µL of each dilution to be added directly into the RT-PCR well
Study Instructions

Analysed straight away = **Day 0**

- **S1**
- **S2**
- **S3**
- **S4**

RNA samples analyzed in duplicate and at two concentrations

100 µL V1 = 740,000 *cp*

100 µL V2 = 66,000 *cp*

 Stored at 4°C for 2 days prior to analysis = **Day 2**

- **S5**
- **S6**
- **S7**
- **S8**
- **S9** (NEC1)
- **S10** (NEC2)

RNA samples analyzed in duplicate and at two concentrations

Calibrant (6 dilutions) analyzed in duplicate, plus NECs and NTCs

Copies of SARS-CoV-2 genome equivalents
Please fill in all the cells coloured yellow

<table>
<thead>
<tr>
<th>Concentration Factor</th>
<th>Vol. before processing (mL)</th>
<th>CF (Dilution 1)</th>
<th>Vol. after virus recovery (mL)</th>
<th>CF (Dilution 2)</th>
<th>Vol. of eluted RNA (mL)</th>
<th>RNA Dilution Factor 1</th>
<th>RNA Dilution Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Name:
Analyst Name:
Analysis date (first day):
V1 Spike aliquot number:
V2 Spike aliquot number:

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Replicate Number</th>
<th>Cq Value</th>
<th>Estimated Copy Number/ 81 qPCR</th>
<th>Mean Estimated Copy Number/ 81 qPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Negative Controls
Sample:
Sample 9 (NEC)
NTC

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Replicate Number</th>
<th>Cq Value</th>
<th>Calculated log value</th>
<th>Estimated Copy Number/ 81 qPCR</th>
<th>Mean Estimated Copy Number/ 81 qPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calibrant
Calibrant
Calibrant
Calibrant

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Replicate Number</th>
<th>Cq Value</th>
<th>Calculated log value</th>
<th>Estimated Copy Number/ 81 qPCR</th>
<th>Mean Estimated Copy Number/ 81 qPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slope (m)
Intercept
Correlation coefficient (r²)
Efficiency
Number of points on calibration curve

<table>
<thead>
<tr>
<th>0.00</th>
<th>0.50</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cq</td>
<td>Log 10 concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.00</th>
<th>0.50</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cq</td>
<td>Log 10 concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.00</th>
<th>0.50</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cq</td>
<td>Log 10 concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.00</th>
<th>0.50</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cq</td>
<td>Log 10 concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.00</th>
<th>0.50</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cq</td>
<td>Log 10 concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.00</th>
<th>0.50</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cq</td>
<td>Log 10 concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.00</th>
<th>0.50</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cq</td>
<td>Log 10 concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of calibrant data

Lab 6, US CDC N1 Assay
Slope of -3.32 = 100 % RT-qPCR efficiency
Reasons for using a calibrant

1. Measure reaction efficiencies
2. Report in appropriate units:

Copy number concentration of SARS-CoV-2 genome equivalents

Reported Cq values for the highest calibrant dilution range from 25.31 to 33.77

Reporting in Cq values, a ΔCq of 8.43 represents **345x difference in copy number concentration.**
In reality this is the **same material** measured by 12 different labs using 4 different RT-PCR assays.
Reasons for using a calibrant

1. Measure reaction efficiencies
2. Report in appropriate units
3. Reduced assay-specific bias

Assay biases:
- amplicon length
- secondary structures
- fluorescence chemistries
- threshold position

It’s preferable to report in traceable units rather than Cq values
Reasons for using a calibrant

1. Measure reaction efficiencies
2. Report in appropriate units
3. Reduced assay-specific biases
4. Provides traceability, allowing direct comparison of data between different laboratories

Calibrant \rightarrow copies per μL of extracted RNA

Concentration Factor (CF) \rightarrow copies per mL of wastewater
Concentration Factor (CF)

\[CF = \frac{V_{\text{sample before processing}}}{V_{\text{after recovery}}} \times \frac{V_{\text{concentrate used for RNA extraction}}}{V_{\text{after RNA extraction}}} \times \frac{1}{DF} \]

Allows conversion of copies per µL of extracted RNA into copies per mL of wastewater

Wastewater samples S1 and S2: spiked with ‘V1’, analyzed on Day 0

Labs 5, 6 and 13 only used one assay; labs 2, 8 and 12 had data excluded for one assay
Summary of protocols used by participants

<table>
<thead>
<tr>
<th>Virus Recovery</th>
<th>RNA Extraction</th>
<th>RT-PCR</th>
</tr>
</thead>
</table>
| Eight labs used electronegative membranes with range of pretreatments: | Seven labs used Qiagen kits:
- PowerSoil
- PowerWater
- PowerMicrobiome
- PowerViral | Five labs used PerkinElmer kit including China CDC assays |
| - centrifugation,
- acidification,
- addition of MgCl₂ | Three labs used ThermoFisher kits:
- MagMax Viral Pathogen
- MagMax Microbiome Ultra | Two labs used Promega kit including US CDC assays |
| One lab used 20 % PEG | Other kits used:
- Macherey-Nagel RNA stool kit
- Roche High Pure Viral Nucleic Acid
- Vazyme fast pure viral RNA/DNA | Other kits used:
- ThermoFisher Combo kit,
- Vazyme kit, |
| Two lab used ultrafiltration:
- centrifugal filters
- hollow-fibre concentrating pipette | | Three labs bought primers, probes, enzymes and buffers separately, including one using 2-step RT-PCR. |
Recoveries

\[
\text{Percentage of recoveries of ‘V1’ spiked samples, assuming 740,000 SARS-CoV-2 genome equivalents were spiked into the 50 mL of wastewater (14,800 copies per mL of wastewater).}
\]

\[
\text{Error bars are expanded relative uncertainties (95%) capturing participant measurement variation and V1 measurement uncertainty.}
\]
Detailed comparison of protocols with highest recoveries

<table>
<thead>
<tr>
<th></th>
<th>Lab 7</th>
<th>Lab 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment</td>
<td>Centrifugation @3,270 g spin at 4 °C for 30 min (solids removal)</td>
<td>Centrifugation @10,000 g for 30 min with extract from solids added back to cleared supernatant</td>
</tr>
<tr>
<td>pH Adjustment</td>
<td>pH 3.5</td>
<td>pH 7.0-7.2</td>
</tr>
<tr>
<td>Virus recovery</td>
<td>0.45 µm electronegative membrane, vacuum pump</td>
<td>20 % PEG precipitation, 2 hr incubation at 4 °C, 10,000 g spin for 30 min</td>
</tr>
<tr>
<td>RNA extraction</td>
<td>RNeasy PowerMicrobiome® Kit (Qiagen) Shield™ reagent and phenol added during bead beating</td>
<td>High Pure Viral Nucleic Acid kit (Roche)</td>
</tr>
<tr>
<td>Elution/diluent</td>
<td>Nuclease-free water</td>
<td>Nuclease-free water</td>
</tr>
<tr>
<td>Style of RT-PCR</td>
<td>1-step</td>
<td>2-steps</td>
</tr>
<tr>
<td>Assays</td>
<td>China CDC assays: N gene (FAM) and ORF1ab (Texas Red)</td>
<td>China CDC assay: N gene, FAM-labelled probe</td>
</tr>
<tr>
<td>Temp. during plate set-up</td>
<td>25 °C</td>
<td>4 °C</td>
</tr>
<tr>
<td>Enzymes/mastermixes</td>
<td>SARS-COV-2 Real Time 1-step RT-PCR assay kit (PerkinElmer)</td>
<td>SuperScript III® Reverse Transcriptase (Thermofisher) PerfeCta® qPCR ToughMix (Quanta Biosciences)</td>
</tr>
</tbody>
</table>
| **Cycling parameters** | RT: 37°C, 2 min, 50°C, 5 min, 42°C, 35 min
Enzyme Activation: 94°C, 10 min
Denaturation: 94°C, 10 sec
Annealing: 55°C, 15 sec, Extension: 65°C, 45 sec
Number of Cycles: 45
 | RT: 50°C, 30 min
Enzyme Activation: 95°C, 180 sec
Denaturation: 95°C, 15 sec
Annealing/Extension: 60°C, 30 sec
Number of Cycles: 45
 | |
| **Dilution(s) for RNA** | Neat and 1-in-10 dilution | Neat and 1-in-4 dilution |
| **Concentration Factors** | CF1: 323, CF2: 32 | CF1: 200, CF2: 50 |
Conclusions

- All participants successfully detected RNA from the inactivated V1 virus spiked into wastewater
- Highest recoveries, great reproducibility and clean RNA using:
 - electronegative membranes with centrifugation and acidification as pretreatments
 - 20 % PEG
 - Major implications for lower income regions and ColoSSoS DFAT program
 - PEG method widely used for environmental surveillance of poliovirus – familiar and low cost*
- SARS-CoV-2 calibrant and Concentration Factor for comparable reporting units:

 “RNA copy number concentration of SARS-CoV-2 genome equivalents per mL of wastewater”

*World Health Organization (2003), Guidelines for environmental surveillance of poliovirus circulation, WHO/V&B/03.03
Acknowledgements

• WaterRA for supporting and co-ordinating this study:
 • Dr Kelly Hill and Marlene Hsu

• Victorian Infections Diseases Reference Laboratory for providing gamma-irradiated SARS-CoV-2:
 • Prof. Bruce Thorley and Dr. Julian Druce

• Task Leader for the ColoSSoS Task Group 2 and ColoSSoS Project Manager:
 • Dr Dan Deere

• All of the study participants

• Sydney Water for providing the domestic wastewater sample:
 • Kate McLennan and Anna Flack

• Pathwest and Sydney Water Laboratories for unwittingly assisting with the validation of the V1 and V2 material:
 • Jake Gazeley and Sudhi Payyappat

• The NMI Bioanalysis Team:
 • Dr D.G. Burke, (Manager); Dr K.R. Emslie (NMI Honorary Fellow); Dr A. Baoutina; Dr S. Bhat; Dr M. Forbes-Smith; Ms F. Hall; Dr D. Lynch; Mr J. McLaughlin; Ms L. Partis; Dr L.B. Pinheiro
Contact us for inquiries and calibrant CRM sales

Dr Kate Griffiths
National Measurement Institute

Email: BioRM@measurement.gov.au
Phone: +61 2 8467 3730
36 Bradfield Road, West Lindfield
Sydney, NSW 2070, Australia
measurement.gov.au