Overview of the Ohio Wastewater Monitoring Network

Rebecca Fugitt, MS, RS
Ohio Department of Health

Nichole Brinkman, PhD
US EPA Office of Research and Development

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.
Ohio Wastewater Monitoring Network (OWMN)

Goal
- Monitor trend of SARS-CoV-2 RNA at specific locations (vs compare sites)
- Serve as early indicator of COVID-19 community spread
- Prioritize resources

Statewide network
- Started July 2020
- leveraged expertise and resources
 - Ohio Universities
 - US EPA-ORD

67 locations twice a week

Sequencing to screen for possible presence of SARS-CoV-2 variants
- Variants of Concern (VOC)
- Variants of Interest (VOI)

https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/other-resources/wastewater
Public Health Application

- To serve as an early warning of infection in communities and an understanding of case trends
- The focus is on trends or significant changes in the number of viral gene copies detected.
- Currently action is taken when at least 3 samples show a sustained increase of at least 10-fold (1 log)
- State actions when increases are observed:
 - Notify the local health district and utility
 - Provide information on how to interpret the data and link to message toolkit
 - Notify the state pandemic testing team for linkages to establish pop-up testing sites
 - Provide case data by sewershed to local health district (this extraction to be provided soon)

- Participation in the CDC National Wastewater Surveillance System
Accomplishments

- Built statewide network that represents wastewater flow from nearly 5 million residents
- Almost 1 year of weekly data collected
- All data is publicly available on the Ohio coronavirus dashboard and is updated daily
- Provided nearly 500 warnings to local health communities
- Expanded to include genomic sequencing of wastewater to pair with clinical data and inform public health decisions
• Twice weekly samples
• Report data within 2 days of sample receipt
• No prescribed method; labs decide
• Supply chain shortages
• Low target concentration
• Sample hold time: 4°C - 72 hours
• No sample pasteurization
• **Matrix Spike to assess method recovery efficiency**
 – Coronavirus recommended: human (OC43), murine (MHV), bovine (BCoV)

• **Inhibition control to monitor for PCR amplification inhibition**

• **RT-qPCR standards/RT-ddPCR positive control**

• **Human fraction measurements**
 – crAssphage
 – Pepper mild mottle virus

• **Monthly Interlaboratory Method Validation**
 – Pick a site with sufficient concentration of SARS-CoV-2
 – Each lab gets 0.5 L
 – Each lab processes and analyzes sample
 – Report data to Project Coordinator
<table>
<thead>
<tr>
<th>LAB</th>
<th>LOD (copies/L)</th>
<th>Processing Method</th>
<th>Nucleic Acid Extraction</th>
<th>Quantitative Analysis Method</th>
<th>RT-PCR Standard Curve/ Control</th>
<th>Inhibition Control</th>
<th>Matrix Spike</th>
<th>Fecal Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>850</td>
<td>Centrifugation, filtration</td>
<td>Qiagen RNeasy PowerWater Kit</td>
<td>RT-qPCR</td>
<td>DNA plasmid</td>
<td>Dilution</td>
<td>MHV</td>
<td>crAssphage</td>
</tr>
<tr>
<td>B</td>
<td>135</td>
<td>Centrifugation, filtration</td>
<td>Qiagen Allprep DNA/RNA Kit</td>
<td>RT-qPCR</td>
<td>DNA plasmid</td>
<td>Dilution</td>
<td>BCoV</td>
<td>crAssphage</td>
</tr>
<tr>
<td>C</td>
<td>133</td>
<td>Tween, solids removal, hollow fiber ultrafiltration (InnovaPrep)</td>
<td>Qiagen PowerMicrobiome Kit</td>
<td>RT-ddPCR</td>
<td>DNA plasmid</td>
<td>Luciferase Control RNA</td>
<td>OC43</td>
<td>crAssphage</td>
</tr>
<tr>
<td>D</td>
<td>7,440</td>
<td>Filtration</td>
<td>Trizol, garnet bead beating, alcohol precipitation</td>
<td>RT-qPCR</td>
<td>DNA plasmid</td>
<td>Luciferase Control RNA</td>
<td>BCoV</td>
<td>PMMoV</td>
</tr>
<tr>
<td>E</td>
<td>500</td>
<td>Centrifugation, filtration</td>
<td>Trizol and RNA purification kit</td>
<td>RT-qPCR</td>
<td>Synthetic RNA</td>
<td>Luciferase Control RNA</td>
<td>BCoV</td>
<td>crAssphage</td>
</tr>
<tr>
<td>F</td>
<td>3,000</td>
<td>Promega, add protease, supernatant through GFA/silica column</td>
<td>Promega Wastewater Large Volume TNA Capture Kit</td>
<td>RT-qPCR</td>
<td>DNA plasmid</td>
<td>Promega probe</td>
<td>OC43</td>
<td>PMMoV</td>
</tr>
<tr>
<td>G</td>
<td>231</td>
<td>Centrifugation, filtration</td>
<td>Qiagen RNeasy PowerWater Kit/Trizol-chloroform</td>
<td>RT-ddPCR</td>
<td>SARS-CoV-2 genomic RNA</td>
<td>Luciferase Control RNA</td>
<td>OC43</td>
<td>crAssphage</td>
</tr>
<tr>
<td>H</td>
<td>891</td>
<td>Acidification, Filtration, extract filter</td>
<td>Qiagen Allprep PowerViral DNA/RNA Kit</td>
<td>RT-qPCR</td>
<td>Synthetic RNA</td>
<td>Mouse lung RNA</td>
<td>OC43</td>
<td>PMMoV</td>
</tr>
</tbody>
</table>
OH Network Lab Methods

<table>
<thead>
<tr>
<th>LAB</th>
<th>LOD (copies/L)</th>
<th>Processing Method</th>
<th>Nucleic Acid Extraction</th>
<th>Quantitative Analysis Method</th>
<th>RT-PCR Standard Curve/ Control</th>
<th>Inhibition Control</th>
<th>Matrix Spike</th>
<th>Fecal Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>7,440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of different procedures employed at the various processing/analysis steps.
N2 RNA concentrations from 8 labs span >2 orders of magnitude
RNA sequences with deletions of nucleotides that result in absence of spike aa 69-70 increases over time

RNA sequences with nucleotides that change spike aa 501 increases over time
• **Pooled sample**
 - Cannot assemble a genome
 - Focus on mutations that cause amino acid substitutions, signatures of VOC/VOI

• **Genome/Genetic Sequencing**
 - 3 labs, different methods
 - Tiled amplicon approach
 - Short read seq via Illumina
 - Short term - spike amino acid changes for CDC’s VOC/VOI
 - Report (for each site)
 • Read depth
 • Number of alternative alleles
• How do current practices (eg. methods, protocols, technologies, best practices, etc.) successfully contribute toward comparable, high quality data/results/decisions?
 – Using a consistent method, trends of SARS-CoV-2 RNA in a sewershed can be evaluated
 – Implementation of Quality Control parameters allow for confidence in lab measurements
 – Frequent communication/regular meetings facilitate interlab discussion and troubleshooting

• How do current practices compromise efficiency and reduce confidence in data/results/decisions?
 – Too many labs/methods result in measurement variation
 – Varied experience leads to measurement variation
 – Supply shortages lead to method changes

• What is needed to increase comparability and confidence in data and results?
 – Standardized methods/procedures
 – Standardized quality control samples/reagents
 – Statistical models to quantify uncertainty

• What types of standards could potentially help to fill these needs?
 – Matrix Spike
 – Extraction controls
 – RT-qPCR standards
 – RT-ddPCR controls
 – Inhibition controls
 – Sequencing controls
Research Team and Partners

EPA/ORD
- Maitreyi Nagarkar
- Chloe Hart
- Scott Keely
- Emily Wheaton
- Michael Jahne
- Eunice Varughese
- Jay Garland
- Brian Morris
- Ana Braam
- Barry Wiechman
- Sara Okum

Utilities
- Metropolitan Sewer District of Greater Cincinnati
 - Bruce Smith
- City of Dayton
 - Chris Clark, Walter Schroder
- City of Marion
 - Brittany Bauer
- City of Portsmouth
 - Tommy Stewart
- Montgomery County
 - Jim Davis
- City of Hamilton
 - Mark Smith
- City of Springfield
 - Jeff Yinger

Hamilton County Public Health Department
- Chris Griffith

Ohio Water Resources Center
- Zuzana Bohrerova

Ohio Department of Health
- Rebecca Fugitt
- Brian Hall
- Tiffani Kavalec

University Labs
- Ohio State University
- University of Toledo
- Kent State University
- University of Akron
- Bowling Green State University

Commercial Lab
- LuminUltra