Assessing Quality of Tissue Engineered Retinal Pigment Epithelia Using Absorbance Imaging & Artificial Intelligence

July 1, 2021

Carl Simon
Age-Related Macular Degeneration & Retinal Pigment Epithelial Cells (AMD & RPE)

- RPE support rods & cones by delivering nutrients from the bloodstream & removing waste that the rods and cones generate
- In AMD, RPE stop performing their support functions & rods & cones die, resulting in loss of central vision
- AMD is a common cause of vision loss in developed countries, affecting 30 to 50 million people worldwide
 - No good treatment for 90% of AMD cases (dry AMD)
- **Treatment Goal:** Manufacture healthy RPE & deliver to eye to prevent rod and cone cell death

Formation of tight junctions is key for RPE function

RPE Manufacturing in Bharti Lab at NIH: Takes 155 Days Per Patient

- Draw patient blood, centrifuge, retain PBMC fraction
- Isolate CD34+ monocytes using magnetic beads
- Generate bank of clinical grade induced-pluripotent stem cells (iPSCs) using 4 episomal factors

Blood → **CD34+ Peripheral Blood Monocytes** → **iPSCs** → **Neuro-ectoderm** → **iRPE progenitors** → **Committed iRPE** → **Immature iRPE** → **Mature iRPE**

![Image of iPSC-derived RPE (iRPE)](image)
Pigmentation Correlates with RPE Maturation

- RPE express melanin to absorb light
- Prevents light from entering the back of the eye
 - Reduce light scattering in the eye to improve vision
 - Protect tissue from exposure to light, reduce disease & cancerous lesions
- NOTE: Pigmentation is an indirect measure of function
 - *Pigmentation is not part of the mechanism of action for treating AMD*
 - MOA = support of the rods & cones

Cruz et al. 2018: Phase 1 Clinical Study of an Embryonic Stem Cell-Derived RPE Patch in AMD

“Appearance” is a key quality attribute

VIR = Visual Inspection Release test

- **Appearance and viability**
- **Karyotype**

- **Appearance and viability**
- **Sterility and mycoplasma**

- **Appearance and viability**
- **Sterility**
- **Cell count**

- **Appearance and viability**
- **Mycoplasma**
- **Lin28 ISH (impurity)**
- **PMEL17 ICC (purity)**

- **VIR test**
- **Sterility, endotoxin, and mycoplasma**

“RPE cells were assessed using a light microscope for pigmentation, cobblestone morphology, health and signs of contamination and processed further, only if they passed this visual check.”

“On the day of surgery...The patch is assessed visually through the clear lid of the storage container for integrity, pigmented cell coverage and viability.”
Measurement Issue

Pigmentation Correlates with RPE Maturation

How to replace “Appearance” qualitative visual inspection tests using image as a key quality attribute of iRPE patches with quantitative measurements?
Quantitative Bright-Field Absorbance Microscopy (QBAM)

- Use brightfield microscope as a spectrophotometer
- Each pixel in an image is a *quantitative* measure of pigmentation

Calculate Absorbance Image

\[A = -\log_{10} \frac{I_{\text{Cell}} - I_{\text{Min}}}{I_{\text{Max}} - I_{\text{Min}}} \]
Experimental Overview

The information in the pixels is used to assess RPE quality by 2 approaches:

1. Deep neural network (DNN): uses image-level spatial patterning of pixel intensities
 • Avoids image processing/feature engineering
 • Creates a “Black box” model
 • Tissue-level & cell-level

2. Traditional Machine Learning (TML): uses single cell-level metrics: shape, intensity, texture
 • Requires extensive image processing/feature engineering
 • Provides some biological insights based on important cell metrics/features
 • Cell-level only
Data Collection Routines:

- Data collection automated using custom plugin for MicroManager
- Starts with “microscope stability” routine where it collects images at different exposure times until 95% confidence interval of each pixel is 0.01 absorbance units
- The best exposure time for each pixel is used to generate an “optimized” image
- Takes images at 3 wavelengths by using three different filters (red, green, blue)
 - This helps to account for scattering, since scattering is less dependent on wavelength than is absorbance
Assessing comparability using QBAM to measure absorbance of 3 different neutral density filters imaged on 3 different microscopes using different filters.

Stability metric = $-\log_{10}\left(\frac{I_1}{I_2}\right)$

- Capture 3 images and average (I_1)
- Capture another three images and average (I_2)
- The microscope is stable if stability metric is 0 ± 0.0001
Experimental Overview

1. Patient Blood
2. iPSCs
3. Immature iRPE
4. Seed into Transwell Plates
5. Culture 8 weeks with weekly measurements of: QBAM, TER & VEGF
6. Convert to Absorbance Images
7. Segment cell borders in QBAM by DNN-S
8. Determine single cell metrics using WIPP
9. Train DNN-F to predict TER & VEGF from QBAM using 5/6 of the data
10. Test DNN-F on 1/6 of the data
11. Train TMLs to predict TER & VEGF from WIPP cell metrics using 5/6 plates
12. Test TML on 1/6 of the data
Experimental Overview

Goal for DNN-Z & DNN-S: Segment single cells in QBAM images
- By using QBAM images to predict where a human would identify a cell border in ZO-1 immunostained fluorescence image
Experimental Design

Train on 5 plates…test on 1 plate

- 12-well transwell plates
- 6 plates x 6 wells/plate = 36 wells
- iPSC-derived RPE from healthy donor
- 3 treatments (control, aphidicolin, HPI4)
- QBAM
 - 12 overlapping fields of view per well (4 x 3) per time point
 - Use three different color filters (red, green, blue)
- TER measurement on all wells and plates 1X/week for 6 weeks
- VEGF measured on each well in 2 plates 1X/week

<table>
<thead>
<tr>
<th>Week</th>
<th>QBAM</th>
<th>TER</th>
<th>VEGF Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Generating Good & Bad RPE: Aphidicolin & HPI4

Aphidicolin
• **inducer** of RPE maturation
 • antibiotic that inhibits eukaryotic nuclear DNA replication and blocks the cell cycle at early S phase

HPI4
• **inhibitor** of RPE maturation
 • hedgehog pathway inhibitor-4, HPI4
 • Hedgehog signaling pathway transmits information to embryonic cells required for proper cell differentiation
RPE Functional Attributes:

1) Trans-Epithelial Resistance (TER) &
2) Polarized VEGF Secretion (VEGF Ratio)

Tight junctions are key for RPE function

Tight junctions: multiprotein junctional complexes common in epithelial cell layers that function to prevent passage of solutes & water between cells

Fun Facts

Scope

- iRPE Manufacturing takes 155 days
 - Bharti lab has 2 dedicated staff that only manufacture RPE for use by the rest of the lab
 - $10K in growth factors required to make a batch of RPE
- Cost per patient is unknown (~$1M per patient)
- iPSC technology is new, discovered in 2006, only 6 patients have rec’d them
 - 6 in Japan (1 iRPE patch & 5 iRPE suspensions)
 - 0 in USA
- Data from iRPE from 10 donors
- Implemented 53 DNN & ML AI routines to
- Data Dissemination (600 GB): https://isg.nist.gov/deepzoomweb/data/RPEimplants

Challenges

- Reliability: microscope stability, optimal exposure time, background, blank, 3 colors, different wells
- Speed: Optimizing speed to minimize time that cultures are out of the incubator
- Big data: 200K images, 1TB, 12M single cells
 - 4 channels of data: QBAM RGB + ZO-1 fluorescence
 - organizing, moving, annotating
- Processing: background subtraction, generating absorbance images from brightfield images
- Stitching: 4x3 tiling from each well
- 7 summer students participated in hand segmentations
- Build prototype at NIST & convince NIH to install it
- GLP: NIH gave us access to GLP facility (risky for them)
Quantitative Brightfield Absorbance Microscopy (QBAM)

Week 1

- **HPI4** (inhibits differentiation)
- **Control**
- **Aphidicolin** (induces differentiation)

Week 8

- **HPI4** (inhibits differentiation)
- **Control**
- **Aphidicolin** (induces differentiation)
Each data point is a well

Weekly QBAM imaging did not impact iRPE maturation
Mean Absorbance vs. AI: Trans-Epithelial Resistance (TER)

Quality threshold set at “400” (could be refined after clinical trial)

Root Mean Squared Error (RMSE): 70.6 $\Omega \cdot \text{cm}^2$

Accuracy: 94%, Sensitivity: 1.0, Specificity: 0.9
Quality threshold set at "3.0" (could be refined after clinical trial)

Root Mean Squared Error (RMSE): 1.1
Accuracy: 100%, Sensitivity: 1.0, Specificity: 1.0

Mean Absorbance vs. AI: VEGF Ratio
Deep Neural Network Prediction of RPE Image Segmentation

Comparative histograms of 44 cell image features of RPE segmented by hand or by DNN-S:

- $F_2 = 0.71$
“Cobblestone Network”

Number of Neighbors

Avg. Num. Neighbors

Week
Machine Learning Prediction of TER from WIPP Single Cell Features

Summary of Algorithm Regression Errors

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>TER Root Mean Squared Error ($\Omega \cdot \text{cm}^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNN-F: Deep Learning Neural Network</td>
<td>70.6</td>
</tr>
<tr>
<td>MLP: Multi-Layer Perceptron</td>
<td>84.7</td>
</tr>
<tr>
<td>PLSR: Principle Least-squares Regression</td>
<td>100.1</td>
</tr>
<tr>
<td>L-SVM: Linear Support Vector Machine</td>
<td>102.7</td>
</tr>
<tr>
<td>RR: Ridge Regression</td>
<td>109.6</td>
</tr>
<tr>
<td>RF: Random Forest</td>
<td>116.4</td>
</tr>
</tbody>
</table>

Figure Notes:
- Dashed line represents a perfect prediction.
- $R^2 = 0.94$
- Each point represents a predicted TER value against a measured TER value, with different colors and markers indicating different treatments and timepoints.
- The graph visually compares predicted TER ($\Omega \cdot \text{cm}^2$) against measured TER ($\Omega \cdot \text{cm}^2$), with categories for True Positive, False Positive, False Negative, and True Negative.
Different TML Models Key in on a Similar Set of Cell Features

- Intensity 1 = average minimum intensity per cell
- Texture 1 = 3rd inverse difference moment at 45°
- Texture 2 = 3rd inverse difference moment at 135°
- Shape 1 = Zernike n4-l0 polynomial

What is the biological significance of these metrics?
Different TML Models Key in on a Similar Set of Cell Features

- Intensity 1 = average minimum intensity per cell
- Texture 1 = 3rd inverse difference moment at 45°
- Texture 2 = 3rd inverse difference moment at 135°
- Shape 1 = Zernike n4- l0 polynomial

What is the biological significance of these metrics?

Local heterogeneity is non-homogenous

\[
Z_4^0
\]

Machine Learning Prediction of VEGF Ratio from WIPP Single Cell Features

Summary of Algorithm Regression Errors

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>VEGF Ratio Root Mean Squared Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNN-F: Deep Learning Neural Network</td>
<td>1.01</td>
</tr>
<tr>
<td>RF: Random Forest</td>
<td>1.45</td>
</tr>
<tr>
<td>MLP: Multi-Layer Perceptron</td>
<td>1.47</td>
</tr>
<tr>
<td>L-SVM: Linear Support Vector Machine</td>
<td>1.59</td>
</tr>
<tr>
<td>PLSR: Principle Least-squares Regression</td>
<td>1.65</td>
</tr>
<tr>
<td>RR: Ridge Regression</td>
<td>1.84</td>
</tr>
</tbody>
</table>

The dashed line represents a perfect prediction between the measured and predicted VEGF ratios.
Results not discussed

• Results confirmed in additional donors…
 • iRPE from 5 albino patients: verify QBAM measurements on iRPE with diagnosable differences in pigmentation
 • iRPE from 2 healthy donors: to verify that QBAM did not impact iRPE maturation
 • Clinical-grade iRPE from 3 AMD donors (and 2 or 3 clones from each of 3 donors): to verify AI predictions from QBAM worked for iRPE from AMD patients
 • Using AI to predicting donor identity from QBAM images
 • FDA requires STR phenotyping of for manufactured autologous cell therapies
Conclusions

- Weekly QBAM imaging did not impact iRPE maturation (non-invasive)
- Unprocessed QBAM could predict iRPE function: TER & VEGF ratio
- DNN of unprocessed QBAM images more accurate than segmentation-TML
- Very important that training set have good & bad samples
 - Time: early timepoints less mature, later timepoints more mature
 - Treatments: HPI4 inhibits RPE maturation, aphidicolin promotes
- BALANCE: If you only feed the AI great samples, then it will predict that the test samples are great
Dissemination

 • https://doi.org/10.1172/JCI131187

• QBAM:
 • SQuIRE: Micromanager plugin to collect images
 • Github: https://github.com/Nicholas-Schaub/SQuIRE
 • CARPE: ImageJ plugin to convert bright-field microscope images into absorbance images
 • Github: https://github.com/Nicholas-Schaub/CARPE

• Data: https://isg.nist.gov/deepzoomweb/data/RPE implanted
 • iRPE from healthy donors
 • Healthy1, live RPE, broadband (232 GB)
 • Healthy2, live RPE, narrowband (291 GB)
 • iRPE from 3 AMD patients (4 GB): 2 or 3 clones per donor, cells were fixed
 • iRPE from 5 albino patients (36 GB): Cells were fixed
 • QBAM and ZO-1 fluorescence images from segmenting routines (4 GB)
Acknowledgements

NIST/ITL
- Petre Manescu
- Sarala Padi
- Aman George
- Joe Chalfoun
- Mylene Simon
- Mohamed Ouladi
- Peter Bajcsy

NIST/MML
- Nicholas Schaub
- Nathan Hotaling
- Michael Halter
- Anne Plant
- John Elliott
- Carl Simon

NIH/NEI
- Kapil Bharti
- Arvydas Maminishkis
- Ruchi Sharma
- Qin Wan
- Davide Ortolan
- Tareq Uddin
- Nyusha Lin
- Nikhil Etikela
- Malika Nimmagadda
- Peter Stewart
- Helen Zhao
- Marissa Coene
- Tochi Ugweje
- Jun Jeon
- Hannah Bush