

OSAC 2020-S-0003 Guidelines for Performing Alcohol Calculations in Forensic Toxicology

Forensic Toxicology Subcommittee Chemistry: Seized Drugs & Toxicology Scientific Area Committee Organization of Scientific Area Committees (OSAC) for Forensic Science

Draft OSAC Proposed Standard

OSAC 2020-S-0003 Guidelines for Performing Alcohol Calculations in Forensic Toxicology

Prepared by Forensic Toxicology Subcommittee May 2021

Disclaimer:

This OSAC Proposed Standard was written by the Forensic Toxicology Subcommittee of the Organization of Scientific Area Committees (OSAC) for Forensic Science following a process that includes an <u>open comment period</u>. This Proposed Standard will be submitted to a standards developing organization and is subject to change.

There may be references in an OSAC Proposed Standard to other publications under development by OSAC. The information in the Proposed Standard, and underlying concepts and methodologies, may be used by the forensic-science community before the completion of such companion publications.

Any identification of commercial equipment, instruments, or materials in the Proposed Standard is not a recommendation or endorsement by the U.S. Government and does not imply that the equipment, instruments, or materials are necessarily the best available for the purpose.

To be placed on the OSAC Registry, certain types of standards first must be reviewed by a Scientific and Technical Review Panel (STRP). The STRP process is vital to OSAC's mission of generating and recognizing scientifically sound standards for producing and interpreting forensic science results. The STRP shall provide critical and knowledgeable reviews of draft standards or of proposed revisions of standards previously published by standards developing organizations (SDOs) to ensure that the published methods that practitioners employ are scientifically valid, and the resulting claims are trustworthy.

The STRP panel will consist of an independent and diverse panel, including subject matter experts, human factors scientists, quality assurance personnel, and legal experts, which will be tasked with evaluating the proposed standard based on a comprehensive list of science-based criteria.

For more information about this important process, please visit our website at: <u>https://www.nist.gov/topics/organization-scientific-area-committees-forensic-science/scientific-technical-review-panels</u>

1

Guidelines for Performing Alcohol Calculations in Forensic Toxicology

2

3 Foreword

4 Forensic toxicologists and other experts are frequently requested to perform calculations related to

- 5 alcohol (ethanol), but there can be a high degree of variability in how this work is performed.
- 6 Adherence to this guideline will improve the quality and consistency of this type of work that could

7 mitigate the risk for bias.

8

9 There are numerous factors that must be taken into consideration when providing estimates related to alcohol consumption and alcohol concentrations. Alcohol pharmacokinetics vary within the 10 11 population, but also within an individual. A person's exact volume of distribution and elimination rate 12 at a given time cannot be known. Many forensic blood alcohol results are based on replicate analyses 13 and are reported with an estimation of measurement uncertainty, however, many other results (e.g. 14 breath tests, medical tests) do not provide an uncertainty. Other factors in the process, such as time and weight, may have unknown degrees of accuracy associated with them, depending on the source of 15 16 the information. These factors do not prohibit reasonable estimates from being determined, but do require experts to be conservative, knowledgeable about the limitations, and thorough in their work. 17 18 The expert should not overstate the interpretation of their calculations; nor should they oversimplify 19 the process.

20

The approach taken in this guideline is to provide a reasonable estimate of the *range* which 21 22 encompasses the value of interest, and then apply that range to the question at hand, with 23 consideration of the assumptions that may/may not be made. For example, in a situation where there 24 is a long delay between the incident and the blood draw, an expert may be asked what the subject's 25 blood alcohol concentration was at the time of the incident. Due to the factors discussed within this 26 guideline, the science does not support being able to provide a single value. Rather an estimated range 27 can be provided and applied to the case at hand, while clearly stating any assumptions that may impact 28 that application. The range does not put any greater likelihood that the subject was at the high or low 29 end of the range, nor that they were likely in the middle. The Appendix illustrates how this approach 30 can be applied in various scenarios.

31

32 Future editions of this guideline will work toward applying a statistical approach to the calculations.

33 There are approaches in the literature that provide estimated uncertainties for some of the variables

34 contained within the calculations. For example, for elimination rate and volume of distribution, there is

35	a s	ignificant amount of scientific literature that one may be able to reasonably estimate an average with
36	an	associated uncertainty. The body of knowledge in the peer reviewed literature is continually
37	inc	reasing and may eventually allow for estimations of the variances associated with all the
38	pa	rameters.
39		
40	Pe	rsonnel and training requirements are outside the scope of this guideline. It is expected that persons
41	per	rforming this type of work have an understanding of pharmacokinetics, along with relevant
42	edu	ucation and experience.
43		
44	Ке	ywords
45	Alc	cohol (ethanol), retrograde extrapolation, pharmacokinetics
46		
47	Та	ble of Contents
48		
49	1.	Scope
50		This document provides guidelines for performing alcohol (ethanol) calculations. Guidance on
51		calculations for retrograde extrapolation, forward estimations, minimum drinks consumed, and
52		other typical situations are addressed. Recommendations are provided for evaluation of post
53		absorptive stage, various specimen types, and population variances. Reporting of calculations is
54		also addressed. This guideline is intended for an expert performing alcohol calculations, whether
55		as an employee of a public or private laboratory, or as an independent forensic service provider. It
56		applies to matters related to criminal and/or civil proceedings.
57		
58	2.	Normative References - <u>Required</u> references for using this guideline
59		Maskell, P., Jones, W., Savage, A., and Scott-Ham, M. Evidence based survey of the distribution volume
60		of ethanol; comparison of empirically determined values with anthropometric measures. Forensic
61		Science International, 2019.
62		Jones, A.W. Pharmacokinetics of ethanol – Issues of forensic importance, Forensic Science Review,
63		2011.
64		
65	3.	Terms and Definitions
66		3.1. Alcohol = ethanol
67		

68 4. Background Information

69	4.1. Alcohol Pharmacokinetics
70	The mechanisms of absorption, distribution, and elimination of alcohol throughout the body
71	must be considered when performing alcohol calculations.
72	4.1.1. Absorption
73	The absorption of alcohol is a complex dynamic process that begins as soon as drinking
74	begins. Alcohol is primarily absorbed into the blood stream through the small intestine,
75	but some absorption occurs in the stomach and mouth. Absorption rates are highly
76	variable and are not linear. Factors such as the presence of food in the stomach, the
77	type and volume of beverage consumed, other drugs consumed, and the condition of the
78	gastrointestinal tract, can impact the rate of absorption. Studies support that it can take
79	up to 2 hours for complete absorption after the last drink. (2-4, 7-9, 12, 14-16, 19, 23,
80	24, 30, 31, 34) The time needed to reach the peak alcohol concentration (AC) is not the
81	same as the time to complete absorption.
82	4.1.2. Distribution
83	Alcohol is water soluble and rapidly distributed throughout the total body water by the
84	blood supply. For alcohol, the volume of distribution (Vd) is closely correlated with the
85	total body water. Numerous factors impact an individual's Vd including sex, body mass
86	index (BMI), and age. In general, Vd is typically lower for women, obese individuals, and
87	the elderly. Numerous publications propose mathematical approaches to estimate an
88	individual's Vd based on certain factors (height, weight, sex), and attempt to provide
89	ranges for the Vd of alcohol. (5, 18, 25, 28, 29) However, there are significant
90	limitations to these studies. For example, the number of participants in many studies is
91	quite small, and the participants tend to be Western European and Caucasian, with
92	limited variability of BMI and age. There are also differences in whether Vd, total body
93	water, or rho were measured. Some involved bolus drinking, while others used a social
94	drinking scenario. Alcohol concentration may have been measured in whole blood,
95	serum/plasma, or breath. (5, 18, 25, 28, 29) Therefore, caution must be used when
96	comparing, or attempting to average, these various formulas since they do not all
97	calculate the same variable.
98	4.1.2.1 Research supports a range of 0.40 – 0.80 L/kg or an anthropometric approach
99	(normative references 1 and 2).
100	4.1.2.2 Maskell, et al (normative reference 1) determined the accuracy and precision of the
101	various equations to estimate a subject's Vd by applying them to a single data set
102	compiled from six published studies. The authors provide suggested correction

103	facto	rs for bias, along with confidence intervals for each model. This approach
104	consi	ders the subject's individual factors, and provides a range of Vd values to apply
105	in fur	ther calculations.
106	4.1.2.3 Due t	o the high variability among the population, the use of a single factor for Vd is
107	inapp	propriate.
108	4.1.3 Eliminat	ion
109	Alcohol i	s primarily eliminated via enzyme metabolism in the liver; however, a small
110	amount i	s removed through first pass metabolism or excreted unchanged in the breath,
111	sweat, or	al fluid, and urine. Alcohol is eliminated at a constant, linear rate (zero order
112	kinetics)	until low concentrations are reached.
113	4.1.3.1 An el	imination rate range of 0.010 – 0.025 g/dL/hour encompasses the majority of
114	the p	opulation regardless of age, sex, ethnicity, and drinking experience. (normative
115	refer	ence 2, and 10, 11, 13, 20, 21, 26, 32)
116	4.1.3.2 At co	ncentrations below 0.030 g/dL, the elimination rate may not be linear as zero
117	orde	r kinetics may no longer apply. (1, 11)
118		
119	4.2 Case History	
120	The type of inf	ormation, and source of that information, will vary from case to case. Experts
121	should be clear	as to the information they rely upon, and the assumptions they make. On
122	occasion, that i	nformation may change as the case proceeds.
123	4.2.1	Time: the time of the incident and the timing of drinking play a role in the
124		assumptions that can be made and the associated calculations. For example,
125		the time of last drink based on video surveillance may be considered
126		differently than a time based on the subject's self-reported drinking history.
127		This may impact the assessment of whether the subject was post absorptive
128		at the time of the incident.
129	4.2.2	Type of beverage: when there is evidence of the type of beverage consumed, it
130		may be appropriate to calculate the number of drinks based on that
131		information. However, in other situations, it may be more appropriate to
132		reference a "standard drink" (see 4.5), such as when there is no history or the
133		subject consumed unknown quantities of various types of drinks.
134		
135	4.3 Specimen Consi	derations

136	4.3.1	Serum and plasma have a higher water content than whole blood. Research supports a
137		serum/plasma to blood ratio of 1.04 to 1.26. (6)
138	4.3.2	Urine is an elimination product which is influenced by hydration and time since last
139		void. Results from urine alcohol testing are not amenable to extrapolation or other
140		calculations, including urine results that have been converted to a whole blood
141		equivalent.
142		
143	4.4 Propa	agation of Uncertainty
144	The va	ariance and distribution for all parameters used in the calculations has not been fully
145	chara	cterized in the scientific literature at this point. Therefore, as an initial minimum
146	guide	line, a statistical approach incorporating the uncertainties for each of the parameters is
147	not pr	resented. This guideline does not prohibit the expert from applying accepted statistical
148	mode	ls within the calculations. These calculations should be clearly presented, with references
149	or sta	ted assumptions for the associated uncertainties and the method of determining the
150	uncer	tainty.
151	If kno	wn, the range associated with the measurement uncertainty of the test result may be
152	incorp	porated.
153		
154	4.5 Stand	ard drink
155	A "sta	ndard drink" is defined as a beverage containing approximately 14 grams of alcohol. (33)
156	e.g.	12 ounces, 5% beer
157		5 ounces, 12% wine
158		1.5 ounces, 80 proof liquor (40%)
159		
160	4.6 Englis	sh/Metric conversions (if applicable)
161	Volun	ne: 1 ounce = 29.6 mL
162	Weigł	nt: 1 pound = 0.454 kilograms
163	Heigh	t: 1 inch = 2.54 centimeters or 0.0254 meters
164		
165	4.7 Densi	ty of alcohol = 0.789 g/mL
166		
167	5 Calcu	lations
168	5.1 Alco	ohol Test Results
169	5.1.1	Calculations presented are valid for both blood (g/dL) and breath $(g/210L)$.

170	5.1.2	Serum/plasma results shall be converted to a whole blood equivalent prior to other
171		calculations. The range should be 1.04 to 1.26 serum/plasma to blood ratio. (6) Further
172		calculations shall then be applied to both converted AC results.
173		
174	5.2 Wid	mark's Formula – the relationship between a dose of alcohol and a resulting alcohol
175		concentration.
176		Equation 1 $AC = \frac{D}{Vd * w}$
177		where:
178		AC = alcohol concentration (g/L)
179		D = dose (g)
180		Vd = volume of distribution (L/kg)
181		w = weight (kg)
182		
183	Variati	ions of the formula can be applied to several common scenarios.
184		
185	Estima	ting the minimum number of drinks to achieve a particular alcohol concentration may be
186	used to	o support/refute a particular drinking history, or to establish that someone could not
187	have c	onsumed less than that amount of alcohol.
188	5.2.1	Minimum number of drinks to achieve a particular alcohol concentration:
189		This calculation does <i>not</i> account for any drinks eliminated. It provides an estimate of
190		the equivalent dose of alcohol in the system at the time of the blood draw/breath test.
191		Equation 2: Minimum dose of alcohol
192		$D = AC \times Vd \times w \times 10\frac{dL}{L}$ where:
193		D = dose (g)
194		AC = alcohol concentration (g/dL, g/210 L breath)
195		Vd = volume of distribution (L/kg)
196		w = weight (kg)
197		Equation 3: Using the calculated dose to estimate the minimum number of "drinks"
198		when beverage concentration is known
199		$V = \frac{D}{C \times \rho \times m}$
200		where:
201		V = volume (oz)

202	D = dose (g)
203	C = beverage concentration (mL/100mL)
204	ρ = density of ethanol (0.789 g/mL)
205	m = metric conversion (29.6 mL/oz), if necessary
206	
207	The calculated volume can be converted to the equivalent number of drinks, depending
208	on the type of drink. e.g. If the subject was drinking 12 oz beers, a volume of 37 oz
209	would be equivalent to \sim 3 beers.
210	
211	5.2.2 Maximum alcohol concentration that could theoretically be achieved from a given dose:
212	These calculations provide the maximum AC attainable from a reported number of
213	consumed drinks. They are used to support/refute a particular drinking history. The
214	calculations are used to attempt to answer the question: "If someone had X number of
215	drinks, could they have reached the measured AC?" The calculated results can also
216	provide information to account for potentially unabsorbed alcohol or post incident
217	alcohol consumption.
218	
219	Equation 4: Dose of alcohol from a drink
220	$D = V \times C \times \rho \times m$
221	where:
222	D = dose(g)
223	V = volume (oz)
224	C = beverage concentration (mL/100mL)
225	ρ = density of ethanol (0.789 g/mL)
226	m = metric conversion (29.6 mL/oz), if necessary
227	
228	Equation 5: Theoretical maximum AC from a given drink(s)
229	This calculation provides the <i>theoretical</i> maximum alcohol concentration. It assumes full
230	absorption with no elimination.
231	$AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{L}}$
232	where:
233	AC _{drink(s)} = max alcohol concentration (g/dL) from a drink(s)
234	D = dose(g)

235			Vd = volume of distribution (L/kg)
236			w = weight (kg)
237			
238	5.2.3	A range	e shall be used for Vd in the calculations; either a range of 0.40-0.80 L/kg, or the
239		calcula	ted range using an anthropometric approach (see 4.1.2.1).
240	5.2.4	See A.1	for examples
241			
242	5.3 Retr	ograde	Extrapolation
243	Retrog	grade ext	rapolation is a mathematical process that uses an alcohol concentration at a given
244	point i	n time a	nd estimates what the concentration would have been at an earlier time.
245	NOTE:	It is not	possible to calculate the exact alcohol concentration at an earlier point in time, but
246	an esti	mation i	in the form of a range of concentrations can be provided.
247	5.3.1 E	Basic Cal	culation
248		Equ	uation 6:
249		AC	$a_{nc} = AC_{test} + (R \times T)$
250		wh	ere:
251			AC_{inc} = estimated alcohol concentration at the time of the incident (g/dL)
252			AC _{test} = measured alcohol concentration (g/dL)
253			R = elimination rate (g/dL/hour)
254			T = time between incident and time of breath test/blood draw (hours)
255	5.3.2 I	Extrapol	ation shall not be performed on alcohol concentrations below 0.030 g/dL.
256	5.3.3 I	Eliminati	ion Rate Range
257	[5.3.3.1	The calculation shall be performed using a range of elimination rates. The minimal
258			range shall be 0.010 – 0.025 g/dL/hour.
259	5	5.3.3.2	An elimination rate calculated from two or more test results shall not be used in
260			place of a range.
261	5.3.4	Assessm	ent of absorptive state
262	Ţ	5.3.4.1	The impact of potentially unabsorbed alcohol shall be addressed.
263	5	5.3.4.2	If the time of incident is more than 2 hours after the time of drinking cessation, it is
264			reasonable to assume the subject is post absorptive. See A.2 for example.
265	Ę	5.3.4.3	When the drinking history is unknown, it is not reasonable to assume that the
266			subject is post absorptive. Additional calculations can be applied to assess the
267			impact of potentially unabsorbed alcohol. See A.5 for example.

268	5.3.4.4	If case history indicates that alcohol was consumed after the incident, but before the
269		sample was obtained, this shall be accounted for in the estimates.
270	5.3.4.5	An option to account for unabsorbed alcohol or post incident alcohol consumption is
271		to subtract the impact of those drinks from the estimated post absorptive alcohol
272		concentrations (determined from Equation 6). See Equation 4 to calculate the
273		maximum AC contribution from a drink.
274		Equation 7:
275		Adjusted $AC_{inc} = AC_{inc} - AC_{drink(s)}$
276		where:
277		Adjusted AC_{inc} = estimated AC at time of the incident, accounting for potentially
278		unabsorbed alcohol or post incident alcohol consumption
279		AC_{inc} = estimated AC at time of the incident if subject were in post absorptive
280		state (calculated from Equation 6)
281		AC _{drink(s)} = maximum AC contribution from drink(s) (calculated from Equation 5)
282		Reference A.3 for example of subject not being post absorptive. See A.4 for example
283		of post incident alcohol consumption.
284		
284 285	6. Additional Co	onsiderations and Best Practice Recommendations
		onsiderations and Best Practice Recommendations ation: Calculations should be documented, and assumptions clearly stated. This may
285	6.1 Documenta	
285 286	6.1 Documenta be in the fo	ation: Calculations should be documented, and assumptions clearly stated. This may
285 286 287	6.1 Documentabe in the fo6.2 Protocols:	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc.
285 286 287 288	6.1 Documenta be in the fo6.2 Protocols: provider approvider approvider	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service
285 286 287 288 289	6.1 Documenta be in the fo6.2 Protocols: provider approvider approvider	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service oplies a consistent methodology to service requests. Review: Where feasible, independent review of calculations by a qualified individual
285 286 287 288 289 290	 6.1 Documenta be in the fo 6.2 Protocols: provider ap 6.3 Technical bis encourage 	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service oplies a consistent methodology to service requests. Review: Where feasible, independent review of calculations by a qualified individual
285 286 287 288 289 290 291	 6.1 Documenta be in the fo 6.2 Protocols: provider ap 6.3 Technical I is encourage 6.4 Calculation 	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service oplies a consistent methodology to service requests. Review: Where feasible, independent review of calculations by a qualified individual ged.
285 286 287 288 289 290 291 292	 6.1 Documenta be in the fo 6.2 Protocols: provider ap 6.3 Technical I is encourage 6.4 Calculation and should 	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service oplies a consistent methodology to service requests. Review: Where feasible, independent review of calculations by a qualified individual ged. Is during testimony: Performing alcohol calculations is a forensic service request,
285 286 287 288 289 290 291 291 292 293	 6.1 Documenta be in the fo 6.2 Protocols: provider ap 6.3 Technical I is encourage 6.4 Calculation and should math" that 	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service oplies a consistent methodology to service requests. Review: Where feasible, independent review of calculations by a qualified individual ged. Is during testimony: Performing alcohol calculations is a forensic service request, not be viewed as just a question during direct or cross examination, or "simple
285 286 287 288 289 290 291 292 293 293 294	 6.1 Documenta be in the fo 6.2 Protocols: provider ap 6.3 Technical I is encourage 6.4 Calculation and should math" that respectfully 	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service oplies a consistent methodology to service requests. Review: Where feasible, independent review of calculations by a qualified individual ged. Is during testimony: Performing alcohol calculations is a forensic service request, not be viewed as just a question during direct or cross examination, or "simple the expert should be able to readily perform in their head. While the expert must
285 286 287 288 289 290 291 292 293 293 294 295	 6.1 Documenta be in the fo 6.2 Protocols: provider ap 6.3 Technical I is encourage 6.4 Calculation and should math" that respectfully deposition, 	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service oplies a consistent methodology to service requests. Review: Where feasible, independent review of calculations by a qualified individual ged. as during testimony: Performing alcohol calculations is a forensic service request, not be viewed as just a question during direct or cross examination, or "simple the expert should be able to readily perform in their head. While the expert must y follow the orders of the legal authorities overseeing the testimony (trial,
285 286 287 288 289 290 291 292 293 294 295 296	 6.1 Documenta be in the fo 6.2 Protocols: provider ap 6.3 Technical I is encourage 6.4 Calculation and should math" that respectfully deposition, risks to quare 	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service oplies a consistent methodology to service requests. Review: Where feasible, independent review of calculations by a qualified individual ged. Is during testimony: Performing alcohol calculations is a forensic service request, not be viewed as just a question during direct or cross examination, or "simple the expert should be able to readily perform in their head. While the expert must y follow the orders of the legal authorities overseeing the testimony (trial, etc), performing calculations during live testimony is discouraged due to the various
285 286 287 288 289 290 291 292 293 294 295 296 297	 6.1 Documenta be in the fo 6.2 Protocols: provider ap 6.3 Technical I is encourag 6.4 Calculation and should math" that respectfully deposition, risks to qua document for 	ation: Calculations should be documented, and assumptions clearly stated. This may rm of case notes, an electronic spreadsheet, a written report, etc. It is recommended that written protocols be in place to ensure the forensic service oplies a consistent methodology to service requests. Review: Where feasible, independent review of calculations by a qualified individual ged. Is during testimony: Performing alcohol calculations is a forensic service request, not be viewed as just a question during direct or cross examination, or "simple the expert should be able to readily perform in their head. While the expert must y follow the orders of the legal authorities overseeing the testimony (trial, etc), performing calculations during live testimony is discouraged due to the various ality it may create. When so compelled, it is recommended that the witness

- 301 calculations, rather than redoing them all, e.g. if the subject's drinking history changes, one
 302 could state that it would raise/lower the estimated AC range provided.
 303 6.5 Postmortem specimens: The principles and practices outlined in this guideline may also apply
 304 to postmortem scenarios, but there are additional variables to be considered that are outside
- 305 the scope of this guideline. (18,23)

306 Appendix A (examples)

307			
308	A.1.	Support/refute drinking history	
309	-	v: A 32 year old male subject was pulled over for suspective subject was pulled over for supplementation subject was pulled over for supplementations.	
310	eviden	tial breath test result of 0.19g/210L. He stated he had	been at a local bar for the last 3 hours and
311	only ha	ad 2 pints of Brand X beer. He ate chicken wings and f	rench fries.
312			
313	Questi	on: Is the stated drinking history consistent with the A	C result?
314		This can be answered two different ways: by calculated	ting the minimum number of drinks
315		needed to attain a certain AC, or by calculating the m	aximum AC attainable from a drinking
316		history.	
317			
318	Releva	nt Information:	
319		The subject is 6'1", 230 lbs	
320		Evidential breath test: 0.19g/210L	
321		Alcohol content of Brand X beer ~4.3% (cite reference	e for that brand's alcohol content (e.g.
322		internet site and access date, published refere	ence))
323		1 pint = 16oz	
324			
325	Calculo	ations:	
326		Weight conversion: $w = 230 \ lbs \times 0.454 \ \frac{kg}{lbs} = 10^{10}$)4 kg
327			
328	A.1.1	What is the minimum number of drinks needed to re-	ach a 0.19g/210L AC?
329		Using Equation 2 and a Vd range of 0.40-0.80 L/kg, ca	alculate the dose needed:
330		$D = AC \times Vd \times w \times 10^{\frac{dL}{L}}$	$D = AC \times Vd \times w \times 10^{\frac{dL}{L}}$
331		$D = 0.19 \frac{g}{dL} \times 0.40 \frac{L}{kg} \times 104 kg \times 10 \frac{dL}{L}$	$D = 0.19 \frac{g}{dL} \times 0.80 \frac{L}{kg} \times 104 kg \times 100 kg$
332		$10\frac{dL}{L}$	
333		D = 79g	D = 158g
334		Using Equation 3, calculate the equivalent number of	drinks for that dose:
335		$V = \frac{D}{C \times \rho \times m}$	$V = \frac{D}{C \times \rho \times m}$
336		$V = \frac{79g}{4.3\frac{mL}{100mL} \times 0.789\frac{g}{mL} \times 29.6\frac{mL}{oz}}$	$V = \frac{158g}{4.3\frac{mL}{100mL} \times 0.789\frac{g}{mL} \times 29.6\frac{mL}{oz}}$
337		V = 79 oz	V = 157 oz
338		Drinks = 79oz / 16oz = 5 pints	Drinks = 157oz / 16oz = 10 pints

339 *Opinion: The subject's stated drinking history is inconsistent with the breath test result. He had the* equivalent of ~5-10 pints of Brand X beer in his system at the time of the test. 340 341 342 A.1.2 What is maximum AC that could be reached from 2 pints of Brand X beer? Using Equation 4, calculate the dose from 2 pints of Brand X beer: 343 344 $D = V \times C \times \rho \times m$ $D = 32oz \times 4.3 \frac{mL}{100ml} \times 0.789 \frac{g}{ml} \times 29.6 \frac{mL}{oz}$ 345 D = 32g alcohol in 2 pints of Brand X 346 347 348 Using Equation 5 and a Vd range of 0.40-0.80 L/kg, calculate the maximum range of ACs this 349 dose could theoretically reach: $AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{L}}$ $AC_{drink(s)} = \frac{32g}{0.80\frac{L}{kg} \times 104kg \times 10 \frac{dL}{L}}$ $AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{T}}$ 350 $AC_{drink(s)} = \frac{32g}{0.40\frac{L}{kg} \times 104kg \times 10\frac{dL}{L}}$ 351 352 $AC_{drink(s)} = 0.077g/dL$ $AC_{drink(s)} = 0.038g/dL$ 353 354 Opinion: The subject's stated drinking history is inconsistent with the breath test result. If all the alcohol 355 in 2 pints of Brand X were completely absorbed, and none eliminated, the maximum AC range achievable for the subject would be $\sim 0.038-0.077 \text{ g/dL}$. 356 357 A.2. **Retrograde extrapolation, subject is post absorptive** 358 *History:* A 45 year old woman was drinking wine at an out of town wedding. She left the wedding at 359 360 6:00 pm, and had a five-hour drive home. At approximately 9:00 pm she crossed over the center line 361 and crashed into an oncoming vehicle. She was injured and transported to the hospital; a blood kit was collected at 11:45 pm. The result of the blood test was 0.068g/dL. There were no alcoholic beverages 362 in the vehicle. She stated she had not had anything to drink since leaving the wedding. 363 364 *Question:* What was her AC at the time of the crash? 365 366 **Relevant Information:** 367 The subject is 5'3", 125 lbs 368 Blood alcohol: 0.068g/dL at 11:45 pm 369 Incident: 9:00 pm 370 371 Assumptions:

372	Since there were at least 3 hours between the end of drinking and the incident, the subject is
373	assumed to be post absorptive.
374	No post-incident alcohol consumption.
375	
376	Calculations:
377	Elapsed Time = 9:00 pm to 11:45 pm = 2.75 hours
378	
379	Using Equation 6 and an elimination rate range of 0.010-0.025 g/dL/hour, calculate AC range at
380	time of incident:
381	$AC_{inc} = 0.068 \frac{g}{dL} + (0.010 \frac{g}{dL} / hour \times 2.75 hours) = 0.096 \frac{g}{dL}$
382	$AC_{inc} = AC_{test} + (R \times T)$
383	$AC_{inc} = 0.068 \frac{g}{dL} + (0.025 \frac{g}{dL}/hour \times 2.75 \ hours) = 0.137 \frac{g}{dL}$
384	
385	Opinion: It is estimated that the subject's AC at the time of the incident was ~0.096-0.137 g/dL. Therefore,
386	it is likely the subject was above the 0.08 g/dL legal limit at the time of the incident.
387	
388	A.3. <u>Retrograde extrapolation, subject is not post absorptive</u>
389	History: A 22 year old female subject was drinking tequila shots at a bar. She paid her tab, took one last
390	shot, and left the bar at \sim 11:00 pm. She crashed her car while trying to leave the parking lot. Her blood
391	was drawn at 12:30 am and was a 0.082 g/dL. Her defense is that she was below 0.08g/dL at the time
392	of the crash.
393	
394	<i>Question:</i> Could the subject's AC have been under 0.08 g/dL at the time of the crash?
395	
396	Relevant Information:
397	The subject is 5'8", 160lbs
398	Blood alcohol content: 0.082 g/dL at 12:30 am
399	Incident: 11:00 pm
400	80 proof = 40% alcohol concentration
401	Assumptions:
402	The alcohol from the last shot of tequila was not absorbed at the time of the incident.
403	Tequila is typically ~80 proof.
404	
405	Calculations:

406		Elapsed Time = 11:00 pm to 12:30 am = 1.5 hours
407		Weight conversion: $w = 160 \ lbs \times 0.454 \ \frac{kg}{lbs} = 73 \ kg$
408		
409		Using Equation 6 and an elimination rate range of 0.010-0.025 g/dL/hour, calculate AC range at
410		the time of incident, if the subject were post absorptive:
411		$AC_{inc} = 0.082 \frac{g}{dL} + (0.010 \frac{g}{dL} / hour \times 1.5 hours) = 0.097 \frac{g}{dL}$
412		$AC_{inc} = AC_{test} + (R \times T)$
413		$AC_{inc} = 0.082\frac{g}{dL} + (0.025\frac{g}{dL}/hour \times 1.5 hours) = 0.120\frac{g}{dL}$
414		
415		Using Equation 4, calculate the dose of alcohol from a shot of tequila:
416		$D = V \times C \times \rho \times m$
417		$D = 1.5oz \times 40 \frac{mL}{100mL} \times 0.789 \frac{g}{mL} \times 29.6 \frac{mL}{oz}$
418		D = 14g alcohol in shot of tequila
419		
420		Using Equation 5 and a Vd range of 0.40-0.80 L/kg, calculate the maximum AC a tequila shot
421		could contribute:
422		$AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{L}} \qquad AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{L}}$
423		$AC_{drink(s)} = \frac{14g}{0.40\frac{L}{kg} \times 73kg \times 10\frac{dL}{L}} \qquad AC_{drink(s)} = \frac{14g}{0.80\frac{L}{kg} \times 73kg \times 10\frac{dL}{L}}$
424		$AC_{drink(s)} = 0.048g/dL$ $AC_{drink(s)} = 0.024g/dL$
425		
426		Using Equation 7, adjust the AC to remove the theoretical maximum contribution the last shot
427		could have contributed (using the calculated ranges of AC_{inc} and $AC_{drink(s)}$):
428		Adjusted $AC_{inc} = 0.097 - 0.048 = 0.049g/dL$
429		Adjusted $AC_{inc} = AC_{inc} - AC_{drink(s)}$
430		Adjusted $AC_{inc} = 0.120 - 0.024 = 0.096 g/dL$
431		
432	Opinic	on: Assuming the last shot of tequila was not absorbed at the time of the incident, the subject's AC at
433	that ti	me is estimated to be ~0.049 – 0.096g/dL. Therefore, it is possible she was below the 0.08 g/dL legal
434	limit a	it the time of the incident.
435		
436	A.4.	P <u>ost incident consumption</u>

437	<i>History:</i> A 55 year old man drove his vehicle through his garage door at \sim 6:00 pm. A neighbor
438	witnessed the crash and called the police. When the police arrived at the home, the subject greeted
439	them with a partially consumed bottle of vodka in his hand (80 proof, 750 mL), and he appeared to be
440	intoxicated. He was arrested for suspected DUI and had a breath test result of $0.215 \text{ g}/210 \text{L}$. The
441	defendant claimed he had not been drinking prior to the crash, and that his AC was from the vodka
442	consumption after the crash. He claimed it was a new bottle; approximately one-third was missing.
443	
444	<i>Question:</i> Could the consumption of 1/3 bottle of vodka account for the measured AC?
445	
446	Relevant Information:
447	The subject is 5'10", 210 lbs
448	Breath test result: 0.215g/210L
449	80 proof = 40% alcohol concentration
450	
451	Calculations:
452	Weight conversion: $w = 210 \ lbs \times 0.454 \ \frac{kg}{lbs} = 95 \ kg$
453	Amount consumed = $750 \ mL \ x \ \frac{1}{3} = 250 \ mL$
454	
455	Using Equation 4, calculate the dose of alcohol from the vodka
456	$D = V \times C \times \rho$ (metric conversion not needed)
457	$D = 250mL \times 40 \frac{mL}{100mL} \times 0.789 \frac{g}{mL}$
458	D = 79g alcohol in 1⁄3 bottle of vodka
459	
460	Using Equation 5 and a Vd range of 0.40 - 0.80 L/kg, calculate the maximum AC the vodka could
461	contribute:
462	$AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{L}} \qquad AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{L}}$
463	$AC_{drink(s)} = \frac{79g}{0.40\frac{L}{kg} \times 95kg \times 10\frac{dL}{L}} \qquad AC_{drink(s)} = \frac{79g}{0.80\frac{L}{kg} \times 95kg \times 10\frac{dL}{L}}$
464	$AC_{drink(s)} = 0.208g/dL$ $AC_{drink(s)} = 0.104g/dL$
465	
466	Using Equation 7, adjust the AC to remove the contribution from post-incident alcohol
467	consumption (using the calculated $AC_{drink(s)}$ range):
468	= 0.215 - 0.208 = 0.007 g/dL

469	Adjusted $AC_{inc} = AC_{inc} - AC_{drink(s)}$					
470	= 0.215 - 0.104 = 0.111 g/dL					
471						
472	Opinion: If all the alcohol from the $1/3$ bottle of vodka were completely absorbed, and none eliminated, the					
473	maximum AC range achievable for the subject would be ${\sim}0.104{-}0.208g/dL$. Complete absorption with no					
474	elimination is not realistic, and the theoretical maximum AC range falls below the measured AC, therefore					
475	the subject's drinking history is inconsistent. There was likely alcohol consumption prior to the incident.					
476						
477	A.5 <u>Minimal case history available</u>					
478	<i>History:</i> Subject is a 25-year-old female, 5'5", 160 lbs. Crash at 1:00 am, blood draw at 3:00 am, blood					
479	test result 0.075g/dL. No drinking history available.					
480						
481	<i>Question:</i> What was her AC at the time of the crash?					
482						
483	Relevant Information					
484	The subject is 5'5", 160 lbs					
485	"Standard" drink = 14g of alcohol					
486	Assumptions:					
487	With no drinking history, the impact of potentially unabsorbed alcohol is presented.					
488	Since there is no information on the type of drinks, a standard drink will be used.					
489						
490	Calculations:					
491	Weight conversion: $w = 160 \ lbs \times 0.454 \ \frac{kg}{lbs} = 73 \ kg$					
492	Elapsed Time = 1:00 am to 3:00 am = 2 hours					
493						
494	Using Equation 6 and an elimination rate range of 0.010-0.025 g/dL/hour, calculate the AC at					
495	time of incident if post absorptive:					
496	$AC_{inc} = 0.075\frac{g}{dL} + (0.010\frac{g}{dL}/hour \times 2 hours) = 0.095\frac{g}{dL}$					
497	$AC_{inc} = AC_{test} + (R \times T)$					
498	$AC_{inc} = 0.075\frac{g}{dL} + (0.025\frac{g}{dL}/hour \times 2 hours) = 0.125\frac{g}{dL}$					
499						
500	Using Equation 5 and a Vd range of 0.40-0.80 L/kg, calculate the maximun AC a "standard"					
501	drink could contribute:					

2020-S-0003 Guidelines for Performing Alcohol Calculations in Forensic Toxicology

502	$AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{L}}$		AC_{dr}	$ink(s) = \frac{1}{Vd}$	$\frac{D}{\times w \times 10 \frac{dL}{L}}$		
503	$AC_{drink(s)} = \frac{14g}{0.40\frac{L}{kg} \times 73kg \times 10}$	dL L	AC_{dr}	$ink(s) = \frac{1}{0.86}$	$\frac{14g}{0\frac{L}{kg} \times 73kg \times 10\frac{dL}{L}}$		
504	$AC_{drink(s)} = 0.048g/dL$	AC_{dr}	$AC_{drink(s)} = 0.024g/dL$				
505							
506	Using Equation 7, adjust the AC to re	emove the n	umber of d	rinks that w	ould have to be		
507	unabsorbed to have the subject be below the legal limit at the time of the crash (using the						
508	calculated ranges of AC _{inc} and AC _{drink(s)}):						
509	Adjusted AC _{inc} = AC _{inc} – AC _{drink(s)}						
510	Estimated AC @ 1:00am	0.010 rat	e	0.025 rat	e		
511	Post absorptive (AC _{inc})	0.095	0.095	0.125	0.125		
512	AC _{drink(s)} (Vd 0.40-0.80)	0.048	0.024	0.048	0.024		
513	-1 drink unabsorbed	0.047	0.071	0.077	0.101		
514	-2 drinks unabsorbed				0.077		
515							

516 *Opinion: If the subject was post absorptive at the time of the incident, they were likely above the 0.08g/dL*

517 legal limit at that time. However, if the subject had ~1-2 standard drinks unabsorbed at the time of the

518 incident, they could have been below the 0.08g/dL legal limit.

- 519 **Annex B** Bibliography (informative)
- 520
- Caplan, Y., Goldberger, B. and Aguayo, E. *Garriott's medicolegal aspects of alcohol*. 6th ed. Lawyers &
 Judges Publication Company, Inc, 2014.
- Charlton, S.G. and Starkey, N.J. *Driver risk from blood alcohol levels between 50mg/100ml and* 80mg/100ml, NZ Transport Agency Research Report 541, 2013.
- Section 3. Cowan, J., Weathermon, A., McCutcheon, J. and Oliver, R. *Determination of Volume of Distribution for Ethanol in Male and Female Subjects*. Journal of Analytical Toxicology, 1996.
- Evaluation of Breath Alcohol Profiles and Testing the Reliability of Widmark calculations, Amy
 McElroy SDPD 2009

529 5. Forrest, A. *The Estimation of Widmark's Factor*. Journal of the Forensic Science Society, 1986.

- 6. Chalebois, R. et al. *Comparison of Ethanol Concentrations in Blood, Serum, and Blood Cells for Forensic Application*. Journal of Analytical Toxicology, 1996.
- 532 7. Ganert, P.M. and Bowthorpe, W.D. *Evaluation of Breath Alcohol Profiles Following A Period of Social* 533 *Drinking*, Canadian Society of Forensic Science Journal, 2000.
- Harger, R.N. *Blood Source and Alcohol Level; Errors from Using Venous Blood During Active Absorption*, Alcohol and Road Traffic Proceedings of 3rd International Conference on Alcohol and
 Road Traffic, 1963.
- 537 9. Jakus, J.T. and Shajani, N.K. and Image, B.A. *Consumption of a Large Dose of Alcohol in a Short Time*538 *Span*, Forensic Science International, 1992.
- 539 10. Jones, A.W. Disappearance Rate of Ethanol from the Blood of Human Subjects: Implications in Forensic
 540 Toxicology. Journal of Forensic Sciences, 1993.
- 541 11. Jones, A.W. *Evidence-based survey of the elimination rates of ethanol from blood*. Forensic Science
 542 International, 2010.
- 543 12. Jones, A.W. Interindividual Variations in the Disposition and Metabolism of Ethanol in Healthy Men,
 544 Alcohol, 1984.
- Jones, A.W. and Andersson, L. *Influence of Age, Gender, and Blood-Alcohol Concentration on the Disappearance Rate of Alcohol from Blood in Drinking Drivers*, Journal of Forensic Sciences, 1996.
- 547 14. Jones, A.W. and Jönsson, K.A. Food-Induced Lowering of Blood-Ethanol Profiles and Increased Rate
 548 Elimination Immediately After a Meal, Journal of Forensic Sciences, 1994.
- 549 15. Jones, A.W. and Neri, A. *Evaluation of Blood-Ethanol Profiles after Consumption of Alcohol Together*550 *with a Large Meal*, Canadian Society of Forensic Science Journal, 1991.

- 16. Jones, A.W. and Wigmore, J.G. and House, C.J. *The Course of the Blood-Alcohol Curve After*
- *Consumption of Large Amounts of Alcohol under Realistic Conditions*, Canadian Society of Forensic
 Science Journal, 2006.
- 17. Kugelberg, F.C., Jones, A.W. Interpreting Results of Ethanol Analysis in Postmortem Specimens: A
 review of the literature. Forensic Science International, 2007.
- 18. Maudens, K., Patteet, L., van Nuijs, A., Van Broekhoven, C., Covaci, A. and Neels, H. *The influence of the body mass index (BMI) on the volume of distribution of ethanol.* Forensic Science International, 2014.
- 19. McElrea, A. and Su, C. and Smith, L. *Truncation of Breath Alcohol Measurements and Its Effect on Peak Concentrations*, Journal of the Canadian Society of Forensic Science, 2011.

20. Montgomery, Mark, Reasor, Mark. *Retrograde Extrapolation of Blood Alcohol Data: An Applied Approach.* Journal of Toxicology and Environmental Health, 1992.

- 563 21. Neuteboom, W., Jones, A.W. *Disappearance Rate of Alcohol from the Blood of Drunk Drivers*
- 564 *Calculated from Two Consecutive Samples; What do the Results Really Mean?* Forensic Science
 565 International, 1990.
- 22. O'Neal, C.L., Poklis, A. *Postmortem production of ethanol and factors that influence interpretation: a critical review*. American Journal of Forensic Medicine and Pathology, 1996.
- San Diego Police Department Crime Lab, Alcohol Section Training Studies (pending ToxTalk
 publication), 2006
- 570 24. San Diego Sheriff's Regional Crime Laboratory, Alcohol Section Training Studies (pending ToxTalk
 571 publication), 2012-2018
- 572 25. Seidl, S., Jensen, U. and Alt, A. *The calculation of blood ethanol concentrations in males and females.*573 International Journal of Legal Medicine, 2000.
- 574 26. Stowell, A.R., Stowell, L.I. *Estimation of Blood Alcohol Concentrations After Social Drinking*. Journal
 575 of Forensic Sciences, 1998.
- 576 27. UKIAFT 2019. UKIAFT Guidelines for Performing Alcohol Technical Defence Calculations version
 577 3.0
- 578 28. Ulrich, L., Cramer, Y., Zink, P. *Relevance of individual parameters in the calculation of blood alcohol*
- *levels in relation to the volume of intake* | Die Berücksichtigung individueller Parameter bei der
 Errechnung des Blutalkoholgehaltes aus der Trinkmenge., Blutalkohol, 1987.
- 29. Watson, P., Watson, I. and Batt, R. *Prediction of blood alcohol concentrations in human subjects. Updating the Widmark Equation*. Journal of Studies on Alcohol, 1981.
- 30. Watkins, Richard L. and Adler, Eugene V. *The Effect of Food on Alcohol Absorption and Elimination Patterns*, Journal of Forensic Sciences, 1993.

- 585 31. Winek, Charles L. and Wahba, Wagdy W. and Dowdell, Jody L. *Determination of Absorption time of*
- 586 *Ethanol in Social Drinkers*, Forensic Science International, 1996
- 32. Winek, C., Murphy, K. The Rate and Kinetic Order of Ethanol Elimination. Forensic Science
 International, 1984
- 589 33. "What Is A Standard Drink?" *National Institute on Alcohol Abuse and Alcoholism*, U.S. Department of
- 590 Health and Human Services, <u>www.niaaa.nih.gov/alcohol-health/overview-alcohol-</u>
- 591 <u>consumption/what-standard-drink</u>, 09 Apr. 2018.
- 592 34. Yang, Chi-ting. *A study of alcohol pharmacokinetic of local Chinese in Hong Kong*, University of Hong
 593 Kong, 2003.