The National Institute of Standards and Technology (NIST) develops cybersecurity standards, guidelines, best practices, and other resources to meet the needs of U.S. industry, federal agencies, and the broader public. Our work ranges from specific information that can be put into practice immediately to longer-term research that anticipates advances in technologies and future challenges.

As part of our efforts to cultivate trust in information, systems, and technologies and to help organizations measure and manage risk, we carry out cybersecurity assignments defined by federal statutes, executive orders, and policies, including developing cybersecurity standards and guidelines for federal agencies.

Our cybersecurity activities are driven by the needs of U.S. industry, government agencies, and the broader public, and they are undertaken only if our expertise is appropriate for NIST, which is a non-regulatory agency, and can make a difference. We manage very few operational programs, recognizing that other agencies and organizations focus on those aspects of cybersecurity, often using NIST-developed resources to inform their work.

We work closely with organizations in the public and private sectors to ensure that our information can be readily leveraged to address specific issues that they face. We listen, communicate, coordinate, and cooperate with industry and other agencies to prioritize and deliver the most effective information and services. When NIST produces documents and tools for federal agencies, we take their special needs into account while recognizing that many of these resources will be applied in the private sector and by state and local government agencies. These activities take place primarily in the NIST Information Technology Laboratory (ITL) but also involve other parts of the agency.

Our priorities include cryptography, emerging technologies, enhanced risk management, identity and access management, cybersecurity measurements, privacy, trustworthy networks, trustworthy platforms, and education, training, and workforce development. Some of our primary areas of focus are highlighted below. Find out more at NIST’s Cybersecurity Program.

CRYPTOGRAPHY

Mobile computing, e-commerce, and the proliferation of connected devices bring unprecedented benefits to our lives. But to protect individuals, businesses, and the government from the risks these technological advances bring, we need strong cryptography. NIST provides trusted tools and resources to increase the sound use of cryptography.

- We work with stakeholders around the world to develop strong, trusted cryptographic standards and guidelines. This open process brings together industry, government, and academia to develop workable approaches to cryptographic protection that ensure practical security.
NIST has cryptographic standards for a variety of IT needs. Since publishing the first Data Encryption Standard for federal systems and financial transactions in the 1970s, our work in cryptography has continually evolved to meet the needs of the changing IT landscape. Today, NIST cryptography is used everywhere, from tablets and cellphones to ATMs and top secret federal data.

NIST helps to design and test cryptographic algorithms used to create locks and keys. We also assist in their use and help guide how those locks are installed and how effectively they suit the intended purpose. NIST’s validation of strong algorithms and implementations builds confidence in cryptography, increasing its use to protect the privacy and well-being of individuals and businesses in the digital age.

NIST looks to the future to make sure we have the right cryptographic mechanisms ready to protect our identity, data, economy, and way of life as new technologies are brought from research into operation. For example, NIST has a competition underway to develop new kinds of cryptography to protect our data when quantum computing becomes a reality. At the other end of the spectrum, we are advancing so-called lightweight cryptography to balance security needs for circuits smaller than were dreamed of just a few years ago.

ENHANCED RISK MANAGEMENT

More than ever, organizations must balance a rapidly evolving cybersecurity threat landscape against the need to fulfill business requirements on an enterprise level. To help them measure and manage their cybersecurity risk in this larger context, NIST has convened stakeholders to develop:

- The NIST Cybersecurity Framework (CSF), which helps organizations understand their cybersecurity risks (threats, vulnerabilities, and impacts) and how to reduce those risks with customized measures. Initially intended for U.S. private-sector owners and operators of critical infrastructure, the voluntary Framework’s user base has grown dramatically across the nation and globe. The Framework integrates industry standards and best practices. It provides a common language that allows staff at all levels within an organization – and at all points in a supply chain – to develop a shared understanding of their cybersecurity risks. NIST worked with private-sector and government experts to create the Framework, released in 2014 and revised in 2018. The effort went so well that Congress ratified it as a NIST responsibility in the Cybersecurity Enhancement Act of 2014, and a 2017 Executive Order directed federal agencies to use the Framework. The CSF’s five functions are used by the Office of Management and Budget (OMB), the Government Accountability Office (GAO), and many others as the organizing approach in reviewing how to assess and manage cybersecurity risks.

- The Risk Management Framework (RMF), a staple for federal agencies’ cybersecurity programs aimed at managing security risks at all levels. The RMF provides a process that integrates security and risk management activities into the system development lifecycle. The risk-based approach to security control selection and specification considers effectiveness, efficiency, and constraints due to applicable laws, directives, Executive Orders, policies, standards, or regulations. NIST updated the RMF to even more fully support organizational security and privacy and to integrate security-related, supply chain risk management (SCRM) concepts. The RMF now demonstrates how the Cybersecurity Framework can be aligned with the RMF and implemented using established NIST risk management processes. Targeted at federal agencies, the RMF is also used widely by state and local agencies and other organizations.

- The Privacy Framework: A Tool for Improving Privacy through Enterprise Risk Management, which was introduced in 2020 by NIST after a series of workshops and online forums that brought together industry and government to tackle this increasingly important issue. This voluntary tool is intended to help organizations identify and manage privacy risk to build innovative products and services while protecting individuals’ privacy. It has caught on quickly in private- and public-sector applications.

- Cyber Supply Chain Risk Management (C-SCRM) When a device’s supply chain is compromised, its security can no longer be trusted, whether it is a chip, laptop, server, or other technology. NIST has collaborated with public- and private-sector stakeholders to research and develop C-SCRM tools and metrics, producing case studies and widely used guidelines on mitigation strategies. These multiple documents reflect the complex global marketplace and assist federal agencies and the private sector in managing information, communications, and operational technologies supply chain risks that threaten their information systems and...
organizations. NIST has also integrated C-SCRM considerations prominently into the NIST CSF and RMF (see above). A demonstration project is identifying methods by which organizations can verify that their purchased computing devices’ internal components are genuine and have not been altered during the manufacturing and distribution process or after sale from a retailer – until the device is retired from service.

A May 2021 Executive Order directed NIST to identify or develop standards, tools, best practices, and other guidelines to assist software developers in enhancing software supply chain security.

PRACTICAL SOLUTIONS

NIST’s National Cybersecurity Center of Excellence (NCCoE) is a collaborative hub where companies, government agencies, and academic institutions work together to address businesses’ most pressing, practical cybersecurity issues.

- This public-private partnership has provided cybersecurity guidelines for a wide variety of industries, including healthcare, financial services, energy, public safety, and transportation.
- Through consortia – including Fortune 50 market leaders and smaller companies specializing in security – the NCCoE applies standards and best practices to develop and document modular, easily adaptable example cybersecurity solutions using commercially available technology.
- The NCCoE addresses identity and access management (including multifactor authentication), data security integrity, mobile device security, and many other issues. Its work helps to build more trustworthy networks and platforms in areas such as telehealth, Internet of Things, cloud services, 5G communications, and Zero Trust architectures.

INTERNET OF THINGS (IoT)

NIST supports the development and application of standards, guidelines, and related tools to improve the cybersecurity of connected devices, often referred to as the Internet of Things (IoT).

- NIST’s Considerations for Managing IoT Cybersecurity and Privacy Risks report helps IoT users protect themselves, their data, and their networks from potential compromise.
- IoT Device Cybersecurity Core Baseline defines capabilities generally needed to support common cybersecurity controls.
- Recommended activities help manufacturers address customer needs for IoT cybersecurity in their product development processes.
- The Profile Using the IoT Core Baseline and Non-Technical Baseline for the Federal Government provides guidance for manufacturers.
- IoT devices are considered in the NIST guidance, Security and Privacy Controls for Information Systems and Organizations, which is heavily relied upon by public- and private-sector organizations.

Legislation signed into law in December 2020 formally assigned NIST with producing specific IoT guidance and some additional responsibilities.

INDUSTRIAL CONTROL SYSTEMS (ICS)

Widely available software applications and internet-enabled devices have been integrated into most ICS, delivering benefits but also increasing system vulnerability. Sophisticated malware that specifically targets weaknesses in ICS is on the rise, posing threats to U.S. economic and national security. Despite the threats of attacks, utilities and other users of these systems can be hesitant to adopt common security technologies out of concern about impacts on system performance. These systems are used in industries such as utilities and manufacturing to automate or remotely control product production, handling, or distribution. By providing guidance on how to tailor traditional IT security controls to accommodate unique ICS performance, reliability, and safety requirements, NIST helps industry reduce the vulnerability of computer-controlled systems to malicious attacks, equipment failures, and other threats. For example:

- Our popular Guide to Industrial Control Systems (ICS) Security helps industry understand and implement cybersecurity approaches to protect them from these threats. The document offers guidance for how ICS users can apply the approaches to cybersecurity described in the widely used Security and Privacy Controls for Federal Information Systems and Organizations. With this information, utilities, chemical companies, food manufacturers, automakers, and other ICS users can adapt and refine security controls to address their specialized needs.
- NIST is developing practical example solutions to help manufacturers protect industrial control systems
from data integrity attacks and address other cybersecurity challenges.

- We are helping energy companies to improve the overall security of information exchanges between and among distributed energy resource systems and electric power distribution facilities.
- NIST’s Cybersecurity Framework Manufacturing Profile can be used as a roadmap for reducing cybersecurity risk for manufacturers in a way that aligns with manufacturing sector goals and industry best practices.

WORKFORCE EDUCATION & TRAINING

The National Initiative for Cybersecurity Education (NICE), led by NIST, is a partnership among government, academia, and the private sector focused on cybersecurity education, training, and workforce development. Its mission is to energize and promote a robust network and an ecosystem of cybersecurity education, training, and workforce development.

- The NICE Cybersecurity Workforce Framework is a fundamental reference for describing and sharing information about cybersecurity work. It establishes a much-needed taxonomy and common lexicon that describes cybersecurity work and workers irrespective of where or for whom the work is performed.
- The NICE Framework increasingly is relied upon across all sectors and is helping organizations as they address an urgent shortage of workers to fill cybersecurity jobs.
- NICE also helps visualize the need for and supply of cybersecurity workers across the country via a Cybersecurity Jobs Heat Map. The tool provides data to help employers, job seekers, policy makers, training providers, and guidance counselors meet today’s increasing demand.

NIST CYBERSECURITY FUNDAMENTALS

- **OPEN AND TRANSPARENT**: NIST’s processes bring together stakeholders in an open forum.
- **COLLABORATIVE**: NIST provides a space for government agencies, businesses, and academic institutions to collaborate.
- **PRACTICAL**: NIST helps develop practical example solutions to address real-world challenges.
- **FORWARD-THINKING**: NIST looks to the future and anticipates challenges that lie ahead.

Recent Milestones Driven by Federal Statutes, Executive Orders, and Policies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cybersecurity Framework released; Cybersecurity Enhancement Act assigns NIST workforce, other responsibilities</td>
<td>Law designates NIST to Federal Acquisition Security Council, produce supply chain guidance</td>
<td>NIST produces IoT guidance per IoT Cybersecurity Improvement Act; NIST issues Security and Privacy Controls, Rev 5; NIST updates NICE strategic plan</td>
<td>NIST launches Small Business Cybersecurity Corner website following 2018 statute</td>
<td>NIST launches effort to enhance software supply chain security in response to Executive Order</td>
<td>NIST launches public key Post-Quantum Cryptography Standardization initiative</td>
</tr>
</tbody>
</table>