Audience Instructions

- Please Mute all connections
- Submit Questions in the Chat
 - Questions will be addressed after all major components
- To be called upon by the moderator please raise hand
Welcome

Context & Background

Technical Components

- Task 1: In-Situ Captures of AWS-1 LTE for Aeronautical Mobile Telemetry System Evaluation
 Speaker: Eric Nelson, NTIA
- Task 2: Laboratory Methods for Recording AWS-3 LTE Waveforms
 Speaker: Duncan McGillivray, NIST
- Task 3: AWS-3 LTE Impacts on Aeronautical Mobile Telemetry
 Speakers: W.F. Young, MITRE; Duncan McGillivray, NIST; Adam Wunderlich, NIST

Wrap-up
Established in 2015 by NIST, the U.S. DoD, and NTIA. In 2018, added NOAA, NSF, and NASA.

Organizes a national network of federal, academic, and commercial test facilities

Provides trusted spectrum testing, modeling, and analysis to develop and deploy spectrum-sharing technologies and inform future spectrum policy and regulations.
NASCTN MISSION

To provide, through its members, robust test processes and validated measurement data necessary to develop, evaluate and deploy spectrum sharing technologies that can increase access to the spectrum by both federal agencies and non-federal spectrum users.

Develop scientifically rigorous test plans and new methodologies with independent experts.

Access to key test facilities, and commercial and federal equipment and capabilities.

Provide validated data and models for use within the spectrum sharing community.

Operates as a trusted agent and protect proprietary, sensitive, and classified information.
<table>
<thead>
<tr>
<th>Contributors</th>
<th>Contributors</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duncan McGillivray</td>
<td>Eric Nelson</td>
<td>William Young – Test Lead</td>
</tr>
<tr>
<td>Adam Wunderlich</td>
<td>Frank Sanders</td>
<td>Mark Krangle</td>
</tr>
<tr>
<td>Jack Sklar</td>
<td>Kenneth Brewster</td>
<td>Mark Lofquist</td>
</tr>
<tr>
<td>Aric Sanders</td>
<td>Rebecca Dorch</td>
<td>Evan Briggs</td>
</tr>
<tr>
<td>M. Keith Forsyth</td>
<td></td>
<td>Ashton Knight</td>
</tr>
<tr>
<td>Daniel Kuster</td>
<td></td>
<td>Jacob Johnson</td>
</tr>
<tr>
<td>Melissa Midzor</td>
<td></td>
<td>Nevan Shattuck</td>
</tr>
<tr>
<td>Fabio daSilva</td>
<td></td>
<td>Keith Hartley</td>
</tr>
<tr>
<td>Matthew Briel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irena Stevens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acronyms Slide

- ABE – adjacent band emission
- AMT – aeronautical mobile telemetry
- ARTM-CPM – Advanced Range Telemetry continuous phase modulation
- AWGN – additive white Gaussian noise
- AWS-1 – advanced wireless services – 1
- AWS-3 – advanced wireless services – 3
- Az – azimuth
- BER – bit error rate
- BW – bandwidth
- dBFS – decibel relative to Full Scale
- DUT – device under test
- EAFB – Edwards Air Force Base
- E_b/N_0 - energy per bit per noise density
- IRIG – Inter-Range Instrumentation Group
- LaRC – Langley Research Center
- LDPC – low density parity check
- LTE – long term evolution
- NASA – National Aeronautics and Space Administration
- NASCTN – National Advanced Spectrum and Communications Test Network
- N_a^{eff} - effective ambient noise
- N_0 – noise spectral density
- NIST – National Institute of Standards and Technology
- OBW – occupied bandwidth
- OOBE – out of band emission
- PL - pathloss
- PCM/FM – pulse code modulation / frequency modulation
- QPSK – quadrature-phase shift keying
- RB – resource block
- Rx – receive
- S_{ave} – signal average power
- SABE – AMT Signal to ABE Power ratio
- SOQPSK – shaped offset QPSK
- SOQPSK-FEC – SOQPSK with forward error correction
- STC – space time coding
- STC-FEC – STC with forward error correction
- Tx – transmit
- UE – user equipment
- UL – uplink
- VSA – vector signal analyzer
- VSG – vector signal generator
- WF – waveform
AWS-3 auction led to compressed operations of DoD range Aeronautical Mobile Telemetry (AMT) systems.

AMT infrastructure remains unchanged, and current IRIG protocols for mitigating interference do not include new waveforms such as LTE.

NASCTN Projects focused on:
- Out-of-band emissions measurements for LTE devices operating in the AWS-3 Band (2018)
- Coexistence metrics and compatible evaluation methodologies for studying LTE impacts on AMT receivers (2021)
- Developing a curated set of LTE waveforms for future testing of multiple range environments
 - Single and multi-user, uplink only (2021)
Prior NASCTN Project: Out-of-Band Emissions Measurements of LTE Devices Operating in the AWS-3 Band

- Report jointly published by NTIA and NIST Jan 2018:
 - NTIA TR-18-528, NIST TN-1980

Report presents power spectral densities of AWS-3 LTE OOBE with the potential to impact operation of physically co-located AMT systems in adjacent bands.
Test Plan Review
Susceptibility Study Test Plan Concept

Notional scenario

- **Collect radiated LTE uplink waveforms in-situ and in-laboratory**
 - Surrogate in-situ LTE form translated to AWS-3 band
 - In-situ waveforms captured through telemetry receiver antennas and at the input to the AMT receiver

- **Collect multiple Key Performance Indicators**
 - Bit error rate, signal-to-noise ratio, $Eb/N0$, etc.
 - Include Gaussian noise waveforms

- **Process and analyze data**
 - Compare against IRIG band edge back off recommendations
 - Investigate relation of impacts to “equivalent in-band Gaussian noise”

- **Two Laboratory Testbeds**
 - NIST/NASCTN Boulder, CO
 - MITRE Bedford, MA
Test Outline

<table>
<thead>
<tr>
<th>Overview of testing efforts</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collect In-Situ LTE waveforms/spectrograms at AWS-1</td>
<td>NTIA, NIST, NASA, EAFB</td>
</tr>
<tr>
<td>a. Capture LTE signals in a variety of AMT environments (EAFB, NASA Langley)</td>
<td></td>
</tr>
<tr>
<td>b. Informs efforts #1 and #2 on network laydown and settings</td>
<td></td>
</tr>
<tr>
<td>c. Use waveforms/spectrograms to playback/build interference waveforms for effort #1 & future tests</td>
<td></td>
</tr>
<tr>
<td>Generate Waveforms (and Library for future testing) - Radiated Tests In Lab</td>
<td>NIST</td>
</tr>
<tr>
<td>a. Leverage existing equipment and test benches to generate and capture LTE – UL waveforms</td>
<td></td>
</tr>
<tr>
<td>b. Develop & measure various radiated test scenarios</td>
<td></td>
</tr>
<tr>
<td>c. Establish a “Library of LTE – UL waveforms” that can be leveraged for this and & future tests</td>
<td></td>
</tr>
<tr>
<td>Sensitivity and Susceptibility Testing - Connectorized Lab bench test with AMT hardware</td>
<td>NIST, MITRE</td>
</tr>
<tr>
<td>a. Test sensitivity to various VSG produced signals. Unidirectional Tx -> Rx AMT link, using predefined data-payload/streams.</td>
<td></td>
</tr>
<tr>
<td>b. Test susceptibility to generated LTE waveforms based on efforts #2, #3</td>
<td></td>
</tr>
<tr>
<td>i. Gain insights into response & relaxation time</td>
<td></td>
</tr>
<tr>
<td>ii. Automate / execute tests in laboratory environment</td>
<td></td>
</tr>
<tr>
<td>iii. Define, track, and analyze AMT Key Performance Indicators</td>
<td></td>
</tr>
<tr>
<td>iv. Develop statistics required (output resultant distributions with uncertainties)</td>
<td></td>
</tr>
</tbody>
</table>
Task 1
In-Situ Captures of AWS-1 LTE for Aeronautical Mobile Telemetry System Evaluation

Presented by:
Eric Nelson, NTIA ITS
In-Situ Captures of AWS-1 LTE for Aeronautical Mobile Telemetry System Evaluation

Eric Nelson • enelson@ntia.gov • (303) 497-7410

12 May 2021
Background

● Measurement support to NASCTN leveraged ITS experience measuring LTE UE uplink aggregate transmissions for DISA/DSO’s Spectrum Sharing Test and Demonstration (SST&D) program

● Carrier Coordinated Testing events have been ongoing since October 2018 in Longmont, Boulder, Denver and Grand Jct, CO as well as the SEC Football Championship game in Atlanta, GA

● Measurements of a wireless carrier’s aggregate uplink transmission in the AWS-1 band (1710-1755 MHz) have served as proxies for future loading of the AWS-3 band (1755-1780 MHz)

● Given the carrier’s cell laydown, the measurement data permit system modelers to compare measured aggregate power at the receive location to model predictions

● In-Situ Captures of AWS-1 LTE for Aeronautical Mobile Telemetry System Evaluation provided a unique opportunity to examine UE emissions through a victim receiver
Tech Tip: Align to LTE Uplink Modulation

- Center frequency between two subcarriers
- FFTs sized to band of interest
- FFT bins are 15 kHz and centered on LTE subcarriers

Reference NTIA Tech Memo 21-552 for more details
AWS Band Plans (uplink only)

LTE deployments in AWS-1 are mature but those in AWS-3 are not...
...so evaluate emissions here...
...as a proxy for emissions here...
...to assess impacts on Federal systems

Note: wireless carriers often combine adjacent licenses to permit larger LTE band deployments
Standalone VSA Capture System

Aggregate UE emissions system deployed at Grand Mesa overlooking Grand Jct, CO

Standalone system was optimized for assessing aggregate interference from population centers. Measurements are referenced to the antenna terminal and impact on victim receivers is inferred.
Panel Antenna Coverage in Grand Jct, CO

azimuths and beamwidths indicated
As a basis for comparison...

- ITS aggregate interference system characteristics:
 - Panel antenna has a 33° horizontal beamwidth and 20.5 dBi gain
 - Preselector has LNA preceded by 60 MHz bandpass filter, which only encompasses the AWS-1 uplink
 - Standoff distance is typically 7-10 km and encompassed population ranges from 50,000 to well over 500,000
 - UEs are served by tens to hundreds of eNBs, so aggregate PRB occupancy during daytime hours is routinely 100%

- The in-situ measurements had these differentiators:
 - Employed a narrow-beam dish antenna
 - Front end filter is much wider—approximately 1370-2560 MHz
 - At EAFB assessed victim receive system with VSA tapped in adjacent to AMT receiver
Longmont, CO

10 MHz LTE band (center)
Denver, CO

10 MHz LTE band (center)
In-building DAS at Mercedes Benz Stadium, Atlanta, GA

10 MHz LTE band (right)

20 MHz LTE band (left) is an external macrocell
Aggregate measurements of larger populations with wide beamwidth antenna permit AWGN assumptions.

Narrow beamwidth in-situ AMT captures demonstrate need for lab testing to characterize and model emissions.
Site Survey

- Assess the characteristics of the RF chain and any presence of strong in-band transmissions
- Demonstrate that the AMT receiver’s front-end LNA determines the receive system noise figure, i.e. the VSA’s internal noise is negligible
- Examine worst case scenario with AMT antenna at 0° elevation. Slew antenna through all azimuths and note azimuths with stronger UE transmissions
- Revisit noted azimuths and dwell for several minutes to gauge level of activity
- Map each noted azimuth to ascertain possible sources; investigate source(s)
 - Intermittent transmissions were often associated with vehicles on rural highways
 - Periodic transmissions were often associated with office buildings or nearby developments
 - Regular transmissions were typically from distant cities
Azimuthal Scanning and Source ID

Real Time SpecAn Display

Antenna Control and Camera

Note: instrument noise floor is driven by front end LNA
Azimuthal Scan Mapping

Edwards AFB

NASA LaRC
In-Situ Measurement Approach

- Revisit worst case azimuths noted during site survey
- Capture UE transmissions from uppermost AWS-1 LTE band
- Increase VSA span to ensure capture of upper adjacent-band emissions
- Using a test UE, generate emissions with known throughputs into antenna sidelobes
- Measure G/T using the sun as a noise source (EAFB) or net loss from the antenna to the VSA input (NASA/LaRC) to provide a gauge to estimate UE transmit power
Sample over-the-air captures

Edwards AFB

NASA LaRC
Single UE Captures

NASA LaRC

<table>
<thead>
<tr>
<th>Requested data rate</th>
<th>Reported data rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kbps</td>
<td>100.5 kbps</td>
</tr>
<tr>
<td>1 Mbps</td>
<td>999.6 kbps</td>
</tr>
<tr>
<td>5 Mbps</td>
<td>4997.8 kbps</td>
</tr>
<tr>
<td>10 Mbps</td>
<td>9962.1 kbps</td>
</tr>
<tr>
<td>20 Mbps</td>
<td>19578.4 kbps</td>
</tr>
<tr>
<td>50 Mbps</td>
<td>49294.2 kbps*</td>
</tr>
</tbody>
</table>

* bandwidth not obtained as indicated by traffic monitoring tool

Edwards AFB
Capture Post-Processing

- Spectrograms are optimal for observing UE activity in a band, but the LTE transmission time interval (TTI) of 1 ms imposes a practical limit of 100 ms per plot making hundreds of plots necessary.

- Spectrogram contours indicate decile power thresholds for each of the FFT bins and are a useful summary—especially for illustrating out of band emissions and peak powers.

- A single sample exceeding the VSA’s Input Range will flag an overload. The instrument has several dB of headroom, so Power vs. Time plots provide insights into overload conditions during a capture.
Power vs. Time and Spectrum Contour Plots
Selection of Waveforms for Bench Testing

Sliding Window Technique

- Start with the 3072 x (N/3072) FFT array which represents power in mW per 15 kHz bin;

- For each FFT sum linear power across the bins within the 18 MHz occupied bandwidth which in this instance was the center 18,000/15 = 1200 bins;

- From this result which contains 15 power measurements per ms, compute the cumulative density functions (CDFs) for windows ranging in size from 100-1000 ms or 1500-15000 samples, slid through the data sequence in 50 ms overlapping steps;

- Determine the 50th, 90th, and 99th percentile power for each window; and

- Plot the percentiles as a function of window number.
Multi-UE (Live) Waveform Artifacts

One of 4 waveforms (2 each from EAFB and NASA/LaRC)
Single (Test Mode) UE Waveform Artifacts

UE upload rate of 10 Mbps
Conclusions

- Use of AWS-1 as a proxy for AWS-3 continues to foster ongoing research as wireless carrier LTE deployments in AWS-3 lag those in AWS-1.
- In-situ captures evidence dramatically reduced band occupancy (versus wider beamwidth antennas) and demonstrate the need for controlled experiments with eNBs.
- Mature VSA capture and post-processing techniques yield test waveforms that illustrate the impact of real-world UE emissions through controlled bench testing.

References
Task 2
Laboratory Methods for Recording AWS-3 LTE Waveforms

Presented by:
Duncan A. McGillivray, NIST
Purpose

Record Radiated Waveforms for Receiver Sensitivity and Susceptibility Testing

a. Leverage existing equipment and test benches to generate and capture LTE – UL waveforms
b. Develop & measure various radiated test scenarios
c. Establish a “Library of LTE – UL waveforms” that can be leveraged for AWS-3 LTE Impacts on AMT and future tests

• Experimental Setup
• Experimental Design
• Data Synchronization and Validation
• Library
Anechoic Chamber LTE UE Measurements

- **Communications and Diagnostic**
 - Hybrid – cabled & over the air testbed controls test factors:
 - Pathloss to DUT
 - RF condition of Traffic Generator
 - Cellular traffic parameters
 - DUT UE data rate
 - Background traffic of the eNB cell
 - Monitoring of LTE diagnostics at the DUT UE and uplink (UL) traffic close to the eNB
 - Records
 - UE diagnostics
 - Spectrum occupancy

- **IQ recording**
 - Separate path
 - Electronically triggered
 - Optimized for dynamic range
IQ Capture Scenarios

- **Static Settings:**
 - IQ Recording
 - 61.44 M Samples/s
 - Length: 5 seconds
 - eNB
 - P0 PUSCH -85 dBm
 - P0 PUCCH -117 dBm
 - alpha 0.8
 - DUT UE-primary
 - traffic type: UDP
 - RSRP: -95 dBm
 - DUT UE-secondary
 - 0.5 Mbps uplink rate
 - traffic type: UDP
 - RSRP: -115 dBm
 - Background Traffic
 - 0.5 Mbps per loading UE
 - traffic type: UDP
 - RSRP: -95 dBm

<table>
<thead>
<tr>
<th>Factor</th>
<th># Levels*</th>
<th>Settings</th>
<th>Type</th>
<th>Testbed Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power control</td>
<td>2</td>
<td>Open Loop / Closed Loop</td>
<td>categorical</td>
<td>eNB</td>
</tr>
<tr>
<td>Allocation</td>
<td>3</td>
<td>5, 10, 20 MHz</td>
<td>numeric</td>
<td>eNB</td>
</tr>
<tr>
<td>Resource Block (RB)</td>
<td>4</td>
<td>None, Upper 6 RBs, Upper 10 RBs, Center 10% RBs</td>
<td>categorical</td>
<td>eNB</td>
</tr>
<tr>
<td>blanking mask</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUT UL data rate</td>
<td>4</td>
<td>0.5, 1, 5, 10 Mbps</td>
<td>numeric</td>
<td>DUT UE</td>
</tr>
<tr>
<td># loading UEs</td>
<td>3</td>
<td>3, 7, 15</td>
<td>numeric</td>
<td>Traffic Generator</td>
</tr>
<tr>
<td># radiating UEs</td>
<td>2</td>
<td>1, 2</td>
<td>numeric</td>
<td>NBIT</td>
</tr>
</tbody>
</table>

*Test scenarios not fully factorial

56 unique configurations; 5 seconds recordings; each recorded twice
Data Synchronization and Validation

- IQ recording
 - Published as
 - interleaved 16 bit integer
 - spectrogram (dB/RB)
 - referenced to -25 dBm
- Real-time spectrum
 - Not published
 - Used as cross confirmation that VST and USRD are recording the same events
- UE Diagnostic
 - Published as
 - Diagnostic spectrogram (mW/RB)
 - Time series of
 - uplink grant size & location (Start RB, # of RBs)
 - MCS index (integer)
 - Total Power per TTI (dBm)

Time-aligned through autocorrelation
IQ Library

AWS-3 Captures in Laboratory Setting

Configuration 1

Capture 1

Data.zip

140 millisecond snapshot of 5 second recording

<table>
<thead>
<tr>
<th>Power Control</th>
<th>Resource Blanking</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLPC</td>
<td>None</td>
<td>20 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DUT UE Data Rate</th>
<th>Number Loading UEs</th>
<th>Number Radiating UEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 kbps</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>
Task 3
AWS-3 LTE Impacts on Aeronautical Mobile Telemetry

Presented by:
William F. Young, MITRE
Adam Wunderlich, NIST
Duncan A. McGillivray, NIST
Outline

- Testbed Design & Characterization
- Experiment Design
- Waveform Processing
- Susceptibility Study
 - Frequency Offset Experiment: IRIG-based Analysis
 - Selected Results from Main Characterization Experiment
 - Equivalent Ambient Noise (E_b/N_0 Loss) Analysis
- Anomalous Results
- Conclusions
Testbed Design & Characterization
Highlights

• MITRE, Bedford MA
 ▫ Lead testbed for
 • Test execution
 • Automation development

• NIST, Boulder CO
 ▫ Lead concept development of
 • Experiment Design
 • Test Profiles

- Efficient traversing of test design with multiple degrees of freedom
- Parallel acquisition of test matrix
- High degree of consistency in results
- Confidence in investigation of anomalous results
Test Circuit

AMT TX and ABE Referenced to input of AMT RX

- **Shared**
 - RF circuit componentry
 - Test automation framework
 - Calibration source

- **Differences**
 - AMT TX
 - ABE waveform generator
 - Power meter
 - VSA
Testbed characterization

- Characterized
 - sources for power output and variability across all test design factors
 - variable attenuator performance
- Quantified test circuit path loss
- Investigated receiver noise performance
- Performed rigorous uncertainty estimation for:
 - Aeronautical Mobile Telemetry (AMT) Signal Power at the plane of the AMT receiver (RX)
 - Adjacent band emissions (ABE) signal power at the receiver for both additive white Gaussian noise (AWGN), Long-term Evolution (LTE)
 - AMT Signal to ABE Power ratio (SABE) at the plane of the AMT receiver (RX)

<table>
<thead>
<tr>
<th>Testbed Location</th>
<th>AMT Signal Power at RX Uncert. (dB)</th>
<th>ABE Signal Power at Rx ABE Type Uncert. (dB)</th>
<th>SABE at RX Uncert. (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedford</td>
<td>±0.98</td>
<td>AWGN ±1.02, LTE ±1.19</td>
<td>±2.00 ±1.98</td>
</tr>
<tr>
<td>Boulder</td>
<td>±0.90</td>
<td>AWGN ±0.89, LTE ±1.13</td>
<td>±1.79 ±1.84</td>
</tr>
</tbody>
</table>
Experimental Design
Overview of Experiments

• Pre-testing (a.k.a. sensitivity testing)
 ▫ Early-stage investigations to inform test procedures & test automation

• Seven designed experiments – further details in Chapter 2 of tech report
 ▫ Pilot Study: Baseline Experiment, Characterization Experiment
 ▫ Frequency Offset Experiment
 ▫ Main Characterization Experiment
 ▫ Supplemental Experiments
 • Side Experiment A: Equalizer
 • Side Experiment B: Space-Time Coding
 • Side Experiment C: Excess Noise
Pilot Study

Goals:

1) Verify testbed automation (on two testbeds)
2) Obtain preliminary data to inform subsequent experiments

- Baseline Experiment (Repeatability Assessment)
 - 2 factors, fixed receiver settings, 33 unique test configs
 - Repeated 7 times
- Characterization Experiment
 - 6 factors, 1320 unique test configs
- First NASCTN implementation of parallel testbeds
 - Led to improvements in testbed automation software
 - Informed selection of factors and signal levels for main characterization experiment (described next)
Frequency Offset Experiment

Objective: Characterize effect of shifting AMT center frequency relative to ABE

<table>
<thead>
<tr>
<th>Id</th>
<th>Factor</th>
<th>Settings</th>
<th># Levels</th>
<th>Easy/Hard to Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Modulation Type</td>
<td>PCM/FM, SOQPSK, SOQPSK-FEC, ARTM-CPM</td>
<td>4</td>
<td>Hard</td>
</tr>
<tr>
<td>B</td>
<td>Bit Rate</td>
<td>1, 5, 10 Mbps</td>
<td>4</td>
<td>Hard</td>
</tr>
<tr>
<td>C</td>
<td>ABE Type</td>
<td>AWGN 20 MHz, in-situ LTE captures: single-UE (92 RB, Full, 92 RB filtered, Full filtered), multi-UE: (EAFB Az76, EAFB Az198), lab LTE captures (20 MHz Full, 20 MHz upper 10 RB blanked, 5 MHz Full)</td>
<td>10</td>
<td>Hard</td>
</tr>
<tr>
<td>D</td>
<td>Frequency Offset</td>
<td>1 MHz steps on grid including IRIG-recommended offset</td>
<td>12</td>
<td>Hard</td>
</tr>
</tbody>
</table>

- Only test Modulation/Bit Rate combinations shown in yellow
- Same S_{ave}/ABE_{peak} ratio for each LTE waveform
- S_{ave}/ABE_{ave} fixed for AWGN
- 840 unique test configurations
- Repeats/replication
 - All configurations tested twice at MITRE-Bedford
 - Subset tested twice at NIST-Boulder (excluding SOQPSK-FEC)

Modulation Type vs. Bit Rate (Mbps)

<table>
<thead>
<tr>
<th>Modulation Type</th>
<th>Bit Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM/FM</td>
<td>1 5</td>
</tr>
<tr>
<td>SOQPSK</td>
<td>5 10</td>
</tr>
<tr>
<td>SOQPSK-FEC</td>
<td>5 10</td>
</tr>
<tr>
<td>ARTM CPM</td>
<td>5</td>
</tr>
</tbody>
</table>
Main Characterization Experiment

Objective: Assess impact of different ABE types on AMT receiver performance. Cover transition from strong link (BER < 10^{-7}) to a poor link (BER > 10^{-4})

<table>
<thead>
<tr>
<th>Id</th>
<th>Factor</th>
<th>Settings</th>
<th># Levels</th>
<th>Easy/Hard to Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Modulation Type</td>
<td>PCM/FM, SOQPSK, SOQPSK-FEC, ARTM-CPM</td>
<td>4</td>
<td>Hard</td>
</tr>
<tr>
<td>B</td>
<td>Bit Rate</td>
<td>1, 5, 10, 20 Mbps</td>
<td>4</td>
<td>Hard</td>
</tr>
<tr>
<td>C</td>
<td>ABE Type</td>
<td>None, AWGN (BW=20, 18, 16.5 MHz), in-situ LTE captures: single-UE (92 RB, Full), multi-UE (EAFB Az76, EAFB Az198, LaRC Az140, LaRC Az165)</td>
<td>10</td>
<td>Hard</td>
</tr>
<tr>
<td>D</td>
<td>AMT Signal Level</td>
<td>1 dB steps on grid spanning a 10 dB range with config-dependent shift</td>
<td>11</td>
<td>Easy</td>
</tr>
</tbody>
</table>

- Configurations not tested:
 - PCM/FM at 20 Mbps, ARTM-CPM at 1 Mbps
- 1540 unique test configurations
- Repeats/replication
 - All configurations tested twice at MITRE-Bedford
 - Subset tested twice at NIST-Boulder (excluding SOQPSK-FEC)

Modulation Type Bit Rate (Mbps)

<table>
<thead>
<tr>
<th>Modulation Type</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM/FM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOQPSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOQPSK-FEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARTM CPM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First priority shown in yellow
Supplemental Experiments

• Address emerging aspects of AMT receiver operations and susceptibility testing – details and results in tech report

• **Side Experiment A: Equalizer**
 Objective: Assess impact of enabling equalizer in the presence of ABE

• **Side Experiment B: Space-Time Coding**
 Objective: Assess impact of STC option in the presence of ABE

• **Side Experiment C: Excess Noise**
 Objective: Assess impact of in-band excess white noise on AMT performance
Waveform Processing
As Captured Waveforms

In-Situ LTE Full Persistence Spectrum

- VSA Calibrated Frequency Range
- Persistent noise due to Amplifiers/Non persistent due to time evolved OOBE & adjacent band activity
- Persistent noise due to time evolved OOBE
- VSA Induced Roll-off
- Shoulder
- Roll-Off

Power (d BFS)

Density (%)

Frequency (MHz)

-20 -15 -10 -5 0 5 10 15 20

-120 -100 -80 -60 -40 -20

In Band LTE
Adjacent Band Waveform Review

Frequency Offset Experiments

- ABE level set to as captured in the field
- ABE waveforms include OOBE
- ABE waveforms with extended noise floor

Band Edge and N_a^{eff} Experiments

- ABE level target same peak level
- ABE waveforms filtered to 20 MHz in-band occupied bandwidth
- Adjacent band testing of LTE fundamental
ABE Waveform processing for Frequency offset Experiments

- Receiver Passband can overlap with as captured VSA roll off and is dependent on:
 - IF Filter Selection by the receiver
 - IRIG Band Edge back off frequency
 - Frequency range of the experiment
- To mitigate we present an approach to extend the noise floor of the waveforms
Noise “Floor” Extension Process

- Resample Original waveform
- Apply a bandpass filter (based on VSA calibration window) to the resampled waveform
- Develop an AWGN signal at the same level as the noise shoulder of the original waveform
- Combine the signals
In-Situ Single UE from Edwards – LTE Waveforms

- Filtered for desired Resource Block (RB) activity
 - Activity in all RBs of the LTE band
 - No user activity in 8 RBs closest to AMT channel
Frequency Offset Experiment: IRIG-based Analysis
Frequency Offset Experiment

Objective: Characterize effect of shifting AMT center frequency relative to ABE

<table>
<thead>
<tr>
<th>Id</th>
<th>Factor</th>
<th>Settings</th>
<th># Levels</th>
<th>Easy/Hard to Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Modulation Type</td>
<td>PCM/FM, SOQPSK, SOQPSK-FEC, ARTM-CPM</td>
<td>4</td>
<td>Hard</td>
</tr>
<tr>
<td>B</td>
<td>Bit Rate</td>
<td>1, 5, 10 Mbps</td>
<td>4</td>
<td>Hard</td>
</tr>
<tr>
<td>C</td>
<td>ABE Type</td>
<td>AWGN 20 MHz, in-situ LTE captures: single-UE (92 RB, Full, 92 RB filtered, Full filtered), multi-UE: (EAFB Az76, EAFB Az198), lab LTE captures (20 MHz Full, 20 MHz upper 10 RB blanked, 5 MHz Full)</td>
<td>10</td>
<td>Hard</td>
</tr>
<tr>
<td>D</td>
<td>Frequency Offset</td>
<td>1 MHz steps on grid including IRIG-recommended offset</td>
<td>12</td>
<td>Hard</td>
</tr>
</tbody>
</table>

- Only test Modulation/Bit Rate combinations shown in yellow
- Same S_{ave}/S_{peak} ratio for each LTE waveform
- S_{ave}/S_{ave} fixed for AWGN
- 840 unique test configurations
- Repeats/replication
 - All configurations tested twice at MITRE-Bedford
 - Subset tested twice at NIST-Boulder (excluding SOQPSK-FEC)

<table>
<thead>
<tr>
<th>Modulation Type</th>
<th>Bit Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM/FM</td>
<td>1 5</td>
</tr>
<tr>
<td>SOQPSK</td>
<td>5 10</td>
</tr>
<tr>
<td>SOQPSK-FEC</td>
<td>5 10</td>
</tr>
<tr>
<td>ARTM CPM</td>
<td>5</td>
</tr>
</tbody>
</table>
IRIG 106 Band Edge Back Off

- Determined by:
 - Transmitter power output
 - Power spectral density masks
 - Modulation
 - Bit rate
 - Channelization frequency discretization

<table>
<thead>
<tr>
<th>Modulation / Bit Rate</th>
<th>PCM/FM</th>
<th>SOQPSK</th>
<th>SOQPSK FEC*</th>
<th>ARTM CPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mbps</td>
<td>2.5 MHz</td>
<td>Not Tested</td>
<td>Not Tested</td>
<td>Not Tested</td>
</tr>
<tr>
<td>5 Mbps</td>
<td>10.0 MHz</td>
<td>5.0 MHz</td>
<td>7.5 MHz</td>
<td>4.0 MHz</td>
</tr>
<tr>
<td>10 Mbps</td>
<td>Not Tested</td>
<td>9.0 MHz</td>
<td>14.0 MHz</td>
<td>Not Tested</td>
</tr>
</tbody>
</table>

*LDPC Code Rate 2/3 Information Block Size 4096

- Test configurations shown in yellow

- Calculations based on 10W transmitter
- Band Edge frequency: 1780 MHz

Inter-Range Instrumentation Group: Range Commanders Council Telemetry Group.
IRIG 106-19: Telemetry Standards.
Section A.12: Valid Center Frequencies Near Telemetry Band Edges
AMT Signal and ABE Waveform Levels

Configure the testbed AMT Signal pathloss and ABE pathloss such that at the N-type connector of the receiver:

• AMT average signal targeted -80 dBm
• ABE peak value of in-situ waveforms = ABE peak value as recorded in the field
• ABE peak value of Lab waveforms targeted in-situ single UE ABE peak value
• AWGN 20 MHz average signal targeted Single UE Full 100 RB (37 MHz Filter) average signal
AMT Signal and ABE Levels for Frequency Offset Experiment

<table>
<thead>
<tr>
<th>Test Case</th>
<th>AMT Signal Average (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Offset Experiments</td>
<td>-79.9 ± 0.9 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waveform</th>
<th>Average (dBm)</th>
<th>Peak (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWGN 20 MHz</td>
<td>-59.6 ± 1.1 dB</td>
<td>N/A</td>
</tr>
<tr>
<td>Single UE Full 100 RB (20 MHz Filter)</td>
<td>-63.4 ± 1.1 dB</td>
<td>-52.2 ± 1.1 dB</td>
</tr>
<tr>
<td>Single UE Lower 92 RB (20 MHz Filter)</td>
<td>-63.5 ± 1.1 dB</td>
<td>-52.7 ± 1.1 dB</td>
</tr>
<tr>
<td>Single UE Full 100 RB (37 MHz Filter)</td>
<td>-60.5 ± 1.1 dB</td>
<td>-52.4 ± 1.1 dB</td>
</tr>
<tr>
<td>Single UE Lower 92 RB (37 MHz Filter)</td>
<td>-63.4 ± 1.1 dB</td>
<td>-52.8 ± 1.1 dB</td>
</tr>
<tr>
<td>Multi-UE Az-76 100 RB (EAFB 37 MHz Filter)</td>
<td>-70.6 ± 1.1 dB</td>
<td>-48.0 ± 1.1 dB</td>
</tr>
<tr>
<td>Multi-UE Az-198 100 RB (EAFB 37 MHz Filter)</td>
<td>-82.5 ± 1.1 dB</td>
<td>-53.9 ± 1.1 dB</td>
</tr>
<tr>
<td>Lab-UE Full 100 RB (49 MHz Filter)</td>
<td>-66.0 ± 1.1 dB</td>
<td>-52.9 ± 1.1 dB</td>
</tr>
<tr>
<td>Lab-UE Lower 90 RB (49 MHz Filter)</td>
<td>-65.4 ± 1.1 dB</td>
<td>-52.9 ± 1.1 dB</td>
</tr>
<tr>
<td>Lab-UE Full 25 RB (49 MHz Filter)</td>
<td>-70.7 ± 1.1 dB</td>
<td>-52.9 ± 1.1 dB</td>
</tr>
</tbody>
</table>

Uncertainties are expanded uncertainties for the MITRE Bedford testbed as calculated in Appendix A of the Report.
Frequency Offset Experiment Procedure

- AMT signal frequency is varied across the range from near band edge beyond IRIG 106
Frequency Offset Results: PCM/FM 1 Mbps

- Lab LTE & AWGN
- In-situ LTE

Graphs showing BER versus AMT Offset Frequency (MHz) for different scenarios and conditions.
Frequency Offset Results: PCM/FM 5 Mbps

![Graphs showing BER vs. AMT Offset Frequency for different scenarios like Lab LTE & AWGN and In-situ LTE.]
Frequency Offset Results: SOQPSK 5Mbps

![Graph of Frequency Offset Results: SOQPSK 5Mbps](image)
Frequency Offset Results: SOQPSK 10 Mbps

Lab LTE & AWGN

In-situ LTE

![Graph showing SOQPSK 10 Mbps BER vs AMT Offset Frequency for different scenarios.](image-url)
Frequency Offset Results: SOQPSK FEC 5 Mbps

SOQPSK-FEC 5 Mbps

- **IRIG**
- **99% OBW**

Lab LTE & AWGN

In-situ LTE

BER vs **AMT Offset Frequency (MHz)**

- **Single-UE Full 100 RB (37 MHz Filter)**
- **Single-UE Lower 92 RB (37 MHz Filter)**
- **Multi-UE Az-76° (EAFB) (37 MHz Filter)**
- **Multi-UE Az-198° (EAFB) (37 MHz Filter)**
- **Single-UE Full 100 RB (20 MHz Filter)**
- **Single-UE Lower 92 RB (20 MHz Filter)**
- **AWGN 20 MHz**
- **Lab-UE Full 100 RB (49 MHz Filter)**
- **Lab-UE Lower 90 RB (49 MHz Filter)**
- **Lab-UE Full 25 RB (49 MHz Filter)**
Frequency Offset Results: SOQPSK-FEC 10 Mbps

Graphs showing BER (Bit Error Rate) against AMT Offset Frequency (MHz) for different scenarios and configurations:

1. **Lab LTE & AWGN**
 - IRIG
 - 99% OBW

2. **In-situ LTE**
 - IRIG
 - 99% OBW

Legend:
- Single-UE Full 100 RB (37 MHz Filter)
- Single-UE Lower 92 RB (37 MHz Filter)
- Single-UE Full 100 RB (20 MHz Filter)
- Single-UE Lower 92 RB (20 MHz Filter)
- Multi-UE Az-76° (EAFB) (37 MHz Filter)
- Multi-UE Az-198° (EAFB) (37 MHz Filter)
- AWGN 20 MHz
- Lab-UE Full 100 RB (49 MHz Filter)
- Lab-UE Lower 90 RB (49 MHz Filter)
- Lab-UE Full 25 RB (49 MHz Filter)
Frequency Offset Results: ARTM CPM 5 Mbps

Lab LTE & AWGN

In-situ LTE

Graphs showing BER vs AMT Offset Frequency for different scenarios and configurations.

- Single-UE Full 100 RB (37 MHz Filter)
- Single-UE Lower 92 RB (37 MHz Filter)
- Multi-UE Az-76° (EAFB) (37 MHz Filter)
- Multi-UE Az-198° (EAFB) (37 MHz Filter)
- Single-UE Full 100 RB (20 MHz Filter)
- Single-UE Lower 92 RB (20 MHz Filter)
- AWGN 20 MHz
- Lab-UE Full 100 RB (49 MHz Filter)
- Lab-UE Lower 90 RB (49 MHz Filter)
- Lab-UE Full 25 RB (49 MHz Filter)
Selected Results from Main Characterization Experiment
Main Characterization Experiment

Objective: Assess impact of different ABE types on AMT receiver performance. Cover transition from strong link (BER < 10^{-7}) to a poor link (BER > 10^{-4})

<table>
<thead>
<tr>
<th>Id</th>
<th>Factor</th>
<th>Settings</th>
<th># Levels</th>
<th>Easy/Hard to Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Modulation Type</td>
<td>PCM/FM, SOQPSK, SOQPSK-FEC, ARTM-CPM</td>
<td>4</td>
<td>Hard</td>
</tr>
<tr>
<td>B</td>
<td>Bit Rate</td>
<td>1, 5, 10, 20 Mbps</td>
<td>4</td>
<td>Hard</td>
</tr>
<tr>
<td>C</td>
<td>ABE Type</td>
<td>None, AWGN (BW=20, 18, 16.5 MHz), in-situ LTE captures: single-UE (92 RB, Full), multi-UE (EAFB Az76, EAFB Az198, LaRC Az140, LaRC Az165)</td>
<td>10</td>
<td>Hard</td>
</tr>
<tr>
<td>D</td>
<td>AMT Signal Level</td>
<td>1 dB steps on grid spanning a 10 dB range with config-dependent shift</td>
<td>11</td>
<td>Easy</td>
</tr>
</tbody>
</table>

- Configurations not tested:
 - PCM/FM at 20 Mbps, ARTM-CPM at 1 Mbps
 - 1540 unique test configurations
 - Repeats/replication
 - All configurations tested twice at MITRE-Bedford
 - Subset tested twice at NIST-Boulder (excluding SOQPSK-FEC)

Showcased

<table>
<thead>
<tr>
<th>Modulation Type</th>
<th>Bit Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM/FM</td>
<td>1</td>
</tr>
<tr>
<td>SOQPSK</td>
<td>1</td>
</tr>
<tr>
<td>SOQPSK- FEC</td>
<td>1</td>
</tr>
<tr>
<td>ARTM CPM</td>
<td>5</td>
</tr>
</tbody>
</table>

First priority shown in yellow
ABE Levels as Tested at Band Edge

<table>
<thead>
<tr>
<th>Waveform</th>
<th>Frequency Offset</th>
<th>Average (dBm)</th>
<th>Peak (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWGN 20 MHz</td>
<td></td>
<td>-75.8 ± 0.9 dB</td>
<td>N/A</td>
</tr>
<tr>
<td>AWGN 18 MHz</td>
<td></td>
<td>-76.4 ± 0.9 dB</td>
<td>N/A</td>
</tr>
<tr>
<td>AWGN 16.5 MHz</td>
<td></td>
<td>-76.8 ± 0.9 dB</td>
<td>N/A</td>
</tr>
<tr>
<td>Single UE Full 100 RB (20 MHz Filter)</td>
<td></td>
<td>-69.9 ± 1.1 dB</td>
<td>-61.8 ± 1.1 dB</td>
</tr>
<tr>
<td>Single UE Lower 92 RB (20 MHz Filter)</td>
<td></td>
<td>-72.8 ± 1.1 dB</td>
<td>-62.3 ± 1.1 dB</td>
</tr>
<tr>
<td>Multi-UE Az-76 100 RB (EAFB 20 MHz Filter)</td>
<td></td>
<td>-84.6 ± 1.1 dB</td>
<td>-62.1 ± 1.1 dB</td>
</tr>
<tr>
<td>Multi-UE Az-198 100 RB (EAFB 20 MHz Filter)</td>
<td></td>
<td>-86.5 ± 1.1 dB</td>
<td>-62.1 ± 1.1 dB</td>
</tr>
<tr>
<td>Multi-UE Az-140 100 RB (LaRC 20 MHz Filter)</td>
<td></td>
<td>-80.3 ± 1.1 dB</td>
<td>-62.1 ± 1.1 dB</td>
</tr>
<tr>
<td>Multi-UE Az-165 100 RB (LaRC 20 MHz Filter)</td>
<td></td>
<td>-78.9 ± 1.1 dB</td>
<td>-62.1 ± 1.1 dB</td>
</tr>
</tbody>
</table>

Uncertainties are expanded uncertainties for the MITRE Bedford testbed as calculated in Appendix A of the Report.
Main Experiment: PCM/FM 5 Mbps

![Graph showing BER vs AMT RX Power (dBm) for different conditions: No ABE, AWGN 20 MHz, AWGN 16.5 MHz, AWGN 18 MHz, Single-UE Lower 92 RB, Single-UE Full 100 RB, Multi-UE Az-198° (EAFB), Multi-UE Az-76° (EAFB).]
Main Experiment: SOQPSK 5 Mbps

![SOQPSK 5 Mbps Graph]

- BER vs. AMT RX Power (dBm)
- Legend:
 - Black: No ABE
 - Red: AWGN 20 MHz
 - Red with asterisks: AWGN 16.5 MHz
 - Green: Single-UE Lower 92 RB
 - Red with squares: AWGN 18 MHz
 - Green with triangles: Single-UE Full 100 RB
 - Cyan: Multi-UE Az-198° (EAFB)
 - Blue: Multi-UE Az-76° (EAFB)
Main Experiment: SOQPSK-FEC 5 Mbps
Main Experiment: ARTM CPM 5 Mbps
Summary of BER = 10^{-5} Behaviors

- No ABE
- AWGN 16.5 MHz
- AWGN 18 MHz
- AWGN 20 MHz
- Single-UE Lower 92 RB
- Single-UE Full 100 RB
- Multi-UE Az-198° (EAFB)
- Multi-UE Az-76° (EAFB)
Equivalent Ambient Noise (Eb/N0 Loss) Analysis
Can we characterize the impact of adjacent band emissions in terms of an equivalent ambient noise level?

1) At a fixed BER = BER*, set

\[\frac{E_b}{N_o} \mid_{\text{no-ABE}} = \frac{E_b}{N_a^{\text{eff}}} \mid_{\text{ABE}} \]

- In other words, define \(N_a^{\text{eff}} \) as the equivalent noise power density that yields the same BER as in the no-ABE case.

2) Letting \(S^*_n \) and \(S^*_a \) denote the signal power at BER* for the no-ABE and ABE cases, and using \(E_b = S/BR \), yields

\[N_a^{\text{eff}} = N_o \left(\frac{S^*_a}{S^*_n} \right) \]
Main Experiment: PCM/FM 5 Mbps

BER vs AMT Rx Power

BER* vs N_a effective
Anomalous Results
Anomalous Result – Frequency Offset Experiment: Az 198 Waveform

Unexpected response with Az 198 waveform

Spurious out-of-band emissions in Az 198 waveform land in AMT band

No correlation between OOBE in AMT band and LTE transmissions. OOBE could be due to non-LTE emitter.
Anomalous Result – Main Experiment: PCM/FM 1 Mbps

Results from Bedford testbed; similar unanticipated receiver behavior observed on both testbeds.
Summary of Experiments

- **Pilot Study**
 Goals: Verifying testbed automation & obtain preliminary data
- **Frequency Offset Experiment**
 Objective: Characterize effect of shifting AMT center frequency relative to ABE
- **Main Experiment**
 Objective: Assess impact of different ABE types on AMT receiver performance
- **Side Experiment A: Equalizer**
 Objective: Assess impact of enabling equalizer in the presence of ABE
- **Side Experiment B: Space-Time Coding**
 Objective: Assess impact of STC option in the presence of ABE
- **Side Experiment C: Excess Noise**
 Objective: Assess impact of in-band excess white noise on AMT performance

» 4,723 unique test configurations, 12,571 valid tests
Conclusions

• The frequency offset experiment results suggest that the IRIG back-off calculations work for most of the test ABE types.

• Careful consideration of OOBE characteristics is important
 ▫ Simulation or emulation of ABE does not generally reflect real-world features
 ▫ Two ABE waveforms with nearly equivalent average powers but with seemingly inconsequential differences in OOBE behavior can cause very different impacts on the AMT system. This is clear in the frequency offset results.

• The concept of equivalent in-band ambient noise (E_b/N_o loss) is demonstrated and supports interpretation of impacts on receiver performance.
Publication Information

- **NASCTN Program**
 - https://www.nist.gov/ctl/nasctn

- **Project Page**

- **Reports**
 - *AWS-3 LTE Impacts on Aeronautical Mobile Telemetry*
 - Report: https://doi.org/10.6028/NIST.TN.2140
 - Data: https://data.nist.gov/od/id/mds2-2279

 - *In-Situ Captures of AWS-1 LTE for Aeronautical Mobile Telemetry System Evaluation*

 - *Laboratory Method for Recording AWS-3 LTE Waveforms*
 - Report: https://doi.org/10.6028/NIST.TN.2159
 - Data: https://doi.org/10.18434/mds2-2395
Contact Us

Dr. Melissa Midzor
Program Manager
NASCTN

melissa.midzor@nist.gov
Back Up Slides
Measurements and improved methodology to determine the impact of LTE on AMT systems.

Project comprises three major integrated tasks:

1. Test effects on AMT using a curated set of LTE waveforms of varying signaling conditions
2. Develop a Library LTE waveforms for this and future testing (captured from laboratory and in situ settings)
3. In situ captures using AMT infrastructure to inform scenario development for current and future testing (using deployed AWS-1 as a stand in for AWS-3)
Backup Slide – IF Filter Selection by the Receiver

<table>
<thead>
<tr>
<th>Modulation Type</th>
<th>Data Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM/FM</td>
<td>1 5 10</td>
</tr>
<tr>
<td>SOQPSK</td>
<td>1 5 10 20</td>
</tr>
<tr>
<td>SOQPSK- FEC</td>
<td>1 5 10 20</td>
</tr>
<tr>
<td>ARTM CPM</td>
<td>5 10 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulation Type</th>
<th>Data Rate (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM/FM</td>
<td>2 MHz 1.4 MHz</td>
</tr>
<tr>
<td>SOQPSK</td>
<td>10 MHz 6 MHz</td>
</tr>
<tr>
<td>ARTM CPM</td>
<td>20 MHz 14 MHz</td>
</tr>
<tr>
<td>SOQPSK- FEC</td>
<td>20 MHz 10 MHz</td>
</tr>
<tr>
<td>STC</td>
<td>6 MHz 10 MHz</td>
</tr>
<tr>
<td>STC - FEC</td>
<td>28 MHz 40 MHz</td>
</tr>
</tbody>
</table>

Priority shown in yellow
Testbed Comparison

Example of Consistent Result

Example of Inconsistent Result
Waveforms

4G-LTE Scheduling of UL resources

- LTE Systems interleave/“schedule” uplink broadcasts within the overall allocation
- Scheduling dynamics are derived from several settings within a base station – often customized by cellular operators

- Capture of UE emissions in a 20 MHz uplink allocation obtained through a high gain aeronautical mobile telemetry – tracking antenna

Image credit: https://yatebts.com/an-introduction-to-the-lte-mac-scheduler/
Comparison of Waveforms

AWGN as generated in a VSG

Single UE as captured in a laboratory environment

Multiple-UE as captured in the field with high directivity Antenna
NASCTN Project Timeline

STAGE I: PROPOSAL SCREENING

March 2018 - March 2019
STAGE II: TEST PLAN DEVELOPMENT

STAGE III: TEST EXECUTION

Sep 2020 - May 2021
STAGE IV: SUMMARIZE FINDINGS

PROJECT KICK-OFF MEETING
PUBLIC TEST PLAN BRIEFING & COMMENTS ADJUDICATED

EDWARDS AFB – IN-SITU TEST CAMPAIGN
PILOT STUDY COMPLETE

NASA LANGLEY – IN-SITU TEST CAMPAIGN
LAB CAPTURE COMPLETE

PRESENTATION TO IEEE – EMC "TESTING OF LTE IMPACTS ON AAMT RECEIVERS"

REPORT PUBLISHED – AWS-3 LTE Impacts on AMT
REPORT PUBLISHED - IN-SITU CAPTURES OF AWS-1 LTE FOR AMT SYSTEM EVALUATION
REPORT PUBLISHED - LAB METHOD FOR RECORDING AWS-3 LTE WAVEFORMS

2/1/2018