Biometric Sample Quality Standards

Importance, Status, and Direction

David Benini
Aware, Inc.

INCITS M1 Project Editor – Biometric Sample Quality
ISO/IEC SC 37 Project Editor – Biometric Sample Quality Standard - Part 1 (29794-1)
The Importance of Biometric Sample Quality Scoring

- It is useful upon capture of a biometric sample to be able to predict its future behavior in a matching environment
 - What are the probabilities of a false accept and a false match?
- In this way, samples likely to lead to poor matching performance may be screened upon capture, and subsequently recaptured
- Matching performance is improved by keeping poor quality samples out of the matching environment
Several Contributors/Detractors to Quality

- It would be useful to differentiate between different sources of quality problems
 - Ascertain whether a recapture attempt is useful
 - Troubleshoot quality problems
Fingerprint Image Scoring Example

Score = 14/100
- good quality
- Poor ridge flow or poor minutiae
- too dark
- too light

Score = 81/100
The Heart of the Standardization Challenge

- Sample quality is largely subjective
- Quality algorithms are better aligned with some matchers than others
- A quality algorithm may attempt to be predictive of many matching algorithms, or be optimized to align with a specific matching algorithm
- Different applications and markets have different matching, quality and cost/performance requirements
 - Identification vs. verification
 - Flats vs. rolls
 - High/low resolution
- Technology is evolving
- So...we are inclined to explore standardization mechanisms that enable an open, competitive marketplace for quality algorithms
Standards Background

• M1 and ISO/IEC biometric data interchange format standards already provide a Quality Score field, but do not define its use
 – When I get a score, I don’t know what it means

• BioAPI defines a 0-100 quality score range and bins
 – 0-25: unacceptable
 – 26-50: marginal
 – 51-75: acceptable
 – 76-100: excellent

• The value of a meaningful, interpretable score was conveyed to the standards body
Standardization Approach

- Quality scores should aim to be predictive of sample behavior in a matching environment
- Quality scores must be interchangeable between disparate systems
 - Transportable via biometric data interchange formats
- Quality scores must be meaningful, interpretable and useful
- Standard should define common terms, reference model, and other relevant factors
- Standard should harmonize concepts and fields between modalities
- Standard should provide best practice guidance
- Standards should foster competition and future performance improvements
- Algorithm performance assessment on the drawing board
What DIF Quality Standards are Not

• Not intended to set minimum levels of quality required for a given application
• Not intended to set minimum quality algorithm performance requirements
• A quality score and the term “quality” are not used to describe the acquisition settings of the sample, such as image resolution, dimensions in pixels, grayscale/color bit depth, or number of features
A Spectrum of Approaches
(roughly in order of degree of prescription)

• Quality Algorithm Identification (QAID)
• Normalization techniques
 – Linear scaling
 – Percentile rank
• Impairment notification
 – Features
 – Fidelity value (e.g. PSNR for compression)
• Specification of datasets and associated target scores (QSND)
 – Essentially a quality algorithm performance test tool
• Algorithm classification and certification
• Scoring algorithm standardization
Quality Algorithm ID

- The Quality Algorithm ID (QAID) is an identifier of the quality algorithm used to assign the quality score of the sample
 - Quality algorithm vendor
 - Quality algorithm product code
 - Quality algorithm version major/minor
- QAID fields can be added to data interchange formats to complement the Quality Score field
- The existing IBIA Format Owner Registry provides a list of two-byte codes for vendors, which will be used to indicate the vendor of the quality algorithm used to score the sample in the INCITS-compliant data file
- ANSI NIST Type 10 record being updated to support QAID
QAID Pros and Cons

• Pros
 – Relatively easy to implement the standard
 – Applicable across modalities
 – Enables file recipient to properly interpret score
 – Enables multi-vendor environment
 – Enables use of new, improved algorithms

• Cons
 – Does not attempt to define what is good/bad quality
 – Requires file recipient to perform some interpretation of scores, at least initially
Usefulness of QAID

• Accommodate use of different quality algorithms in a system
 – Differentiate samples scored by different algorithms
 – Vary thresholds according to algorithm ID
 – Enable modular systems, multi-vendor marketplace

• Quality-based conditional processing
 – Apply different matching techniques for different quality score ranges

• Analysis of relevant statistics
 – Collect and store quality data that can be used to assess correlation to various conditions, such as operator, scanner, matching algorithm, time of day, etc.

• Enables flexible use and development of technology
Other Optional Techniques Supported

- **Image processing fidelity**
 - Indicates amount of distortion introduced to image by compression or other process

- **Algorithm classification**
 - Anticipates future standards activity by which quality algorithms may be certified

- **Impairment bitfield**
 - Indicates defects in a sample, such as non-compliant features in a facial image
Standards Status – M1

- Biometric Sample Quality Standard in progress at M1.3 group (data interchange formats) since 2004
- Revision 5 (M1/06-0181) headed to ballot to be considered for release for public comment
- M1 standard will be used to convey Quality Algorithm ID (QAID) in data interchange formats
- Standard is proposed for adoption by data interchange format standards for each modality as they amend, revise, and update their respective standards/drafts
- Content of M1 standard has been submitted as suggested content to ISO/IEC work
Standards Status - International

• The November 2004 in Paris resulted in the establishment (N0923) of Quality Rapporteur Group
• The Quality Rapporteur Group met and produced a Report (N1128), which was presented in South Africa in July 2005
• The Report made several recommendations and suggestions
 – Quality score purpose, expression, and definition
 – CBEFF
 – Scoring methods
• A project was approved to develop a multipart biometric sample quality standard (ISO/IEC 29794-1/4/5)
• Working drafts have been posted for comment and review at July 2006 SC 37 meeting in London
Some Relevant Documents

- M1/05-0091: M1 submission to SC 37 describing QAID
- M1/06-0181: Biometric Sample Quality Standard Draft 5
- N1128: QRG Report
- N1211: WG3 NP
- N1477: 29794-1 WD1
- N1503: 29794-4 WD1
Thank you!

David Benini
Aware, Inc.
(781) 687-0306
DBenini@aware.com